27652 DRAINAGE REPORT
'
r
i
DRAINAGE REPORT
for
Shelley Lake - 4t" Addition
Spokane County, Washington
Updated April, 2004 .
CLC #S020134
Prepared by:
CLC Associates, Inc.
' 707 W. 7th Avenue, Suite 200
Spokane, WA 99204
' (509)458-6840
This report has been prepared by the ssociates, Inc. under the direction of
, the undersigned professional engin v~ d signature appear hereon.
~ ~o~ wAS
C1S'i~
w
~•14- OS '
, *Mark L.~Krigbaum, P.E ~'.a
'
DRAINAGE REPORT FOR SHELLEY LAKE - 4th ADDITION
I PURPOSE
Shelley Lake 4th Addition is part of the Shelley Lake PUD Preliminary Plat and is adjacent to Shelley
Lake 2"d and 3`d Additions. The purpose of this report is to determine the extent of storm drainage
facilities which will be required to dispose of the increase in stormwater runoff created by the
development of Shelley Lake 4th Addition. The storm drainage facilities for this project will be
designed to dispose of runoff from ten and fifty year design storms. This development is within the
Aquifer Sensitive Area of Spokane County and is subject to `208' requirements. For this project the
10 and 50 year curves from the Spokane, Medical Lake, Reardon, Cheney and Rockford intensity
' curves were used, as well as the SCS iso-pluvial rainfall curves.
ANALYSIS METHODOLOGY
The Rational Method, which is recommended for basins less than ten acres in size, was used to
determine the peak discharges and runoff volumes for all basins included in this report.
PROJECT DESCRIPTION
Shelley Lake 4th Addition includes 39 lots of the 262 lots and 459 units in the approved preliminary
~ plat and FEIS documents. The Shelley Lake subdivision is located in the NE 1/4 of the SE 1/4 of
Section 24, T. 25 N., R. 44 E., W.M. within Spokane County, Washington.
TOPOGRAPHY The general slopes within this plat varyfrom nearly flat within several natural'saddles to short slopes
of up to 25-percent. Generally, the area covered by this report would be characterized as rolling.
For development purposes, the natural sloping was used for design and is maintained as much as
possible throughout the project.
I SOILS
As can be seen from the accompanying soils map from the Spokane County Soils Survey as
' performed by the United States Department of Agriculture (USDA) Soil Conservation Services
(SCS), the site consists of soils type GmB. These soils are described as follows:
, GmB - Garrison very gravelly loam, 0 to 8 percent slopes: Soils within this soil type formed in
gravelly glacial outwash material from a variety of igneous rock. These soils are described as
somewhat excessively drained. Surface runoff is slow and the hazard of erosion is slight. Spokane
~ County Guidelines for Stormwater Manaqement indicate this to be a Soil Group Type B and per-
approved for drywell installation.
CLC Associates, Inc. 1 Shelley Lake 4~h Addition
DRAINAGE NARRATIVE
The offsite drainage which flows into Shelley Lake 4"' Addition has been incorporated into the basins
included in this drainage report. As Shelley Lake 4`h Addition is located within the Aquifer Sensitive
Area of Spokane County, all onsite street and portions of future areas will be collected and treated
using the '208' runoff method as described in the Spokane County Guidelines for Stormwater
Manaqement. To facilitate this analysis Shelley Lake 4thAddition was divided into five basins (A, B,
C1,C2 and D) as shown in the Basin Map. Basin C1 and C2 have been divided into sub-basins
(C1A and C2A) to accurately calculate runoff being conveyed to inlets. Table 1 lists the basin
' details. Basins A, B, C, and D were analyzed using developed conditions.
~Basins B,C, & D include some future development. The future developments that are included are
as follows:
Basin B: includes the extended portion of Camine Lane.
Basin C2: includes 2 future lots and a future portion of Shelly Lake Lane.
Basin D: includes the back half of 8 future houses and a future portion of Shelly Lake Lane.
Table 1- Pond and Basin Summary
_ Z , ± .:-5~..- : vo~.. " ~~-..Ze`~r:- i~r,°, -4 e
~.4'.*.i Pond Bas,i.n' ~T~ota~I.~Ar~,ea7"Y'"h .~~x2,.08. Impervious
7,F~I~"C_
- ` _ . * - _ . - , _ - - - - ' • . ' ` ~ . . w_ _ ' _ -.r' ';3t'1;' ,
A A 58,613/1.35 21,574/0.50 0.43 12,574
'
B B 155,712/3.57 26,156/0.60 0.28 15,356
C C 246,398/5.66 103,083/2.37 0.46 58,083
(c l +cz)
D D 290,450/6.67 43,214/0.99 0.26 23,414
1 ' Total Impervious Area includes Paved roadwaY area, 1800 s.f. Per roof and 750 s.f. Per drivewaY.'208' ImPervious
Area includes only the paved roadway area and 750 s.f. per driveway.
1 "208" Ca/cu/ations
Within each basin, the street areas from back of curb to back of curb were calculated to determine
' the required '208' storage. As shown on the `208' calculation worksheets included, the `208' storage
volumes provided are adequate to perform the `208' treatment for the first half inch of rainfall. In
addition to `208' treatment, the enclosed worksheets also show the calculations for the drywell
requirements. The `208' storage requirements for each basin are summarized on the following Table
2.
CLC Associates, Inc. 2 Shelley Lake 4t" Addition
' Table 2-`208' Treatmenf and Drywell Requirement Summary
4i i' i "4 FXt-~.±~ i:
r•,t,S~'a ~ ~a~
~ 1'r►e_a~L~m.e.nt aD ~r .r,~~?"~;~~,,+,:,_r ~ i
ti,~~,e ' ` ! 1'j+HC Y ~
Pond Mi
Re u~ire,d ~F Re utrecl~ = SF P~.r~ovided- ~,~F Provided (~,-S~)
. . .
A A 524 782 536A 800
B B 640 956 723A 1078
C C 2,420 4,840 2,4258 4850
(cI+ c2)
D D 976 1,457 2,511 A 3749
~ Based on a '208'storage depth of 8 inches. Side slope volume is not included.
BBased on a'208' storage depth of 6 inches. Side slope volume is not included.
Total Stormwater Storage Calculations
In addition to the '208' storage requirements, the total stormwater storage for the 10-year and 50-
year design storms was also considered for all of the basins. Each of the ponds in Shelley Lake 4tn
Addition will have the capacity to contain the required volume for the 50-year design storm. The
ponds are only required to handle the 10-year design storm as per Spokane County Guidelines.for Stormwater Manaqement. The bowstring worksheets also show the calculations for the drywell requirements. This information is summarized in the following Table 3. Table 3- 50-year Stormwater Sforage Volume Summary
- a s . _ - ' ~ ' : 4a...., k-is:-•r ~ ~ : . . ' fr~~~•
: ~ f''{ ~i y A~'t.~ _ i}3` ~ i • ' ' ° a#' 7t.cxv n: : Cil•'F`-i~ . • a
~"M '~,t, '%~'R ~~7 -~i~~ i-' ~c F-"~`~~_' =.:''x--: v'~'v'@`x~:ZCB' i''`T i, ~ .e • ; aF :'-,:r.
. +c ~ i+y ~ ,ft ~^.~:~7~~'~S~ ~ ' ~ J►~~,A, y.,r S~r' ' .`~°c~ a . ' r e 1
Pond.~ ~.Basin ~ ``~.~'p ` ~Drywell~-~~:":'Rx j-r -~i~3E''~.~'~ ReqEu'~!'e;d 5(~~F~)~t~~ s :~~Req;u!ire,d~~(~CF)~Y'i~" 'Pr~o~uide.d..~~CF~)`'~ wAY~~: ~,w,.~:
A A 457 897 1,070 ° 1-Type B
I
I g g 660 1,381 1,391 ° 2-Type B
'
C C 2,950 6,276 6,479 E pc
~
D D 2,676 4,028 4,142 ° 1-Type B
I
T me porary gravel perforated pipe with 0.9 cfs outflow was provided for temporary pond.
D Volume provided is based on a 1.0-foot depth with 3:1 side slopes.
E Volume provided is based on a 1.2 foot depth with 3:1 side slopes.
As can be seen in Table 3 all of the ponds will contain the 50-year design storm.
CLC Associates, Inc. 3 Shelley Lake 4 Addition
Curb Drop/lnlet Analysis
! The curb drops for Pond A are located in a continuous condition, the inlets for Ponds B and D are in
sump condition, and Pond C has inlets in both continuous and sump condition. Curb inlet analysis
calculations are included in the appendix.
Conclusion
As demonstrated by the calculations and body of this report the storm drainage facilities provided in
this design will adequately remove from the streets, store and dispose of the stormwater from the
site for the 10-year design storm as required by Spokane County. Calculation worksheets for the 50-
year storm event have been provided to evaluate the performance of the designed drainage
facilities. Additionally, the required '208' treatment area is provided for the runoff from the street
impervious areas.
'
~
'
CLC Associates, Inc. 4 Shelley Lake 4~' Addition
j
~ . . '
. ' ~ y •
.
.
O ~
"
AD
~
~
~ - ,
CN tr- 1 `
S t I • . ` •
~ t• ,'-s:r- , ~ - ~ s
" '~1 , ' • . ~ ',v., ~.y ,s r tf_ . ~ .
H.
~ " • + '''nr'}•' .
. ' ^ r 'as"" > ~ _
` ,~.r-- - ~ ' :yM1 -`~r ' , •
1
t~ f ' ' . •
♦I , • ' 4• ` , •
~ • . ~I ~ `
r _ ~ - t `
SHELLEY LAKE 4TH ADDITION 5020134
Spokane County, Washington 04/27/04
~
50-Year Storm Event Engineer: AKF
INLET FLOW CAPACITIES
in Sump Condirions
,
, , ,r._ r ' w,^ "Vl ~1 et~ax~~ ~ ~ , ..^N ~
N
~
low D ~ ~ 17M, ,i ~`~b. e. , eysw,~ l .~~i~i~ n, ~a ~.',,''~``.fl~~j~l~"''fikr ~~~6aw:~,
1 t~~ _ K ' f ~ ~.1X•[ lli ' D1 .L P i')....~:, _ ~ ` y~ fV'w'~'J~ ' :'?Ji, t , • . .
. , ,lr.. , ~OIlt~ s•[~ - ' Q P ~s~`:,: Q .:~•~:~,~•~r,~;:+~.. 'hQ Q ~
K"." ~
SHELLEY LAKE LANE TYPE 1 (C1-C1A) (1.94+1.11)
C-1 STA 23+25.28 LT GRATE 1.94 3.45 3.67 0.50 3.89 -0.84
SHELLEY LAKE LANE TYPE 1 (C2-C2A) (2.97+1,26)
C-2 STA 23+25.28 RT GRATE 2.97 4.23 5.91 0.50 6.27 -2.04
Grate Perimeters* Qa - C# P* H^ 1.5
Herringbone = 3.67' Where: C= 3.0, P= Perimeter, H= Flow Depth
Vaned = 3.67'
WSDOT= 591' * Grate Peruneter = Available Perimeter Divided by a Safety Factor of 2.
Maximum Flow Depth is based on curb crest above inlet.
Calculated in accordance with Spokane County Guidelines for
Stormwater Management, Section 4-1.
InletSmp
~
SHELLEY LAKE 4TH ADD. 5020134
Spokane County, Washington l l/l 1/2002 9:07
50-Year Storm Event Engineer; AKF
CURB INLET FLOW CAPACITIES
in Sump Conditions
Curb Inlet Basin Basin + lnlet Maximum Maximum By-Pass
Basin Street and lnlet Type Peak Flow By-Pass* Length Flow Depth'* Discharge*** Flow
Station (cfs) 0 H Qa Q' Qa
LANE A TYPE 2
B STA 12+35.99 LT CURB 2.75 1.86 2.00 0,50 2.18 -0.32
SHELLEY LAKE LANE TYPE 2
D STA 25+40.67 RT CURB 5.00 5.00 5.00 0.50 5.46 -0.46
NOTE; TYPE 1 CURB INLET TYPE 2 CURB INLET Qa = 3.087 "L * H^ 1.5
Curb Inlet Depression = 2 in Curb Inlet Depression = 2 in. Where L= Length of Curb Drop, H= Flow Depth
Maximum Inlet Height = 8 in. Curb Inlet Length = 4 ft.
Maximum Inlet Height = 6 in.
• By-Pass flows from upstream inlets on continuous grades.
Maximum Flow Depth is based on Inlet height
Calculated per Section 4-1 of the Spokane County Guidelines
for Stormwater Management
CurbDropS
SHELLEY LAKE 4TH ADD. S020134
Spokane County, Washington 01115103
50-Year Design Storm Engineer: AKF
CURB INLET CALCULATIONS
on Continuous Grade
~ Curb Inlet ~ Basin I Basin Gutter I IRoughnessl I Depth I Discharge) Inlet I By-Pass
Pond ~ Street and I Peak Flowl By-Pass I Slope I Cross slope I Coeff. I Z I of Flow I per Lengthl Length I Flow
~ Station ~(cfs) ~ Q ~ S ~ 12 ~ n ~ n ~ d' ~ QalLa" ~ La ~ Q- Qa
~ CARNINE LN ~ ~ I I ~ I ~ I I
A ~ STA 13+15.17 LT 2.04 ~ 2.04 0.0087 ~ 0.0220 ( 0.016 ~ 2841 ( 0.200 ~ 0.138 ~ 5 ~ 1.35
~ CARNINE LN I I I I I I I I I
A ~ STA 13+35 LT N 0 ~ 1.35 ~ 0.0087 ~ 0.0220 ~ 0.016 ~ 2841 ~ 0.172 ~ 0.118 ~ 5 ~ 0.76
~ CARNINE LN ~ ( I I ~ I I I ~ I
A ~ STA 13+55 LT ~ 0 ~ 0.76 ( 0.0087 ~ 0.0220 0.016 ~ 2841 ~ 0.138 ~ 0.095 ~ 5 ~ 0.28
~ LaNE A I I I I I I I I I
A ~ CARNINE LN ~ 0 ~ 028 ~ 0.0087 ~ 0,0220 ~ 0,016 ~ 2841 ~ 0.095 ~ 0.066 ~ 5 ~ -0.05
~ 13+90
NOTE: TYPES 1& 2 CURB INLETS Curb inlet Depression = 2 in.
* Calculated per Figure 18 of the Spokane County Guidelines
for Stormwater Management -
Calculated per Figure 16 of the Spokane County Guidelines
for Stormwater Management
~
FLOODED WIDTH CALCULATIONS
STREETILOCATION LEFT FLOW WIDTH RIGHT FLOW WIDTH ROAD WIDTH DRY WIDTH MIN DRY WIDTH
r (FT) (FT) , (FT) (FT) (FT)
CARNINE LANE 8.58 0 30 21.42 12
(BASIN B)
CARNINE LANE 7.79 0 30 22.21 12
(BASIN A)
,
SHELLY LAKE LN. 8.7 9.29 30 12,01 12
(BASIN C) SHELLY LAKE LN. 0 10.46 30 19.54 12
(Basin D)
f 1 1
CARNINE LANE (BASIN A)
Worksheet for Gutter Section
,
Project Description
Worksheet Gutter Section -
Type Gutter Section
Solve For Spread
Input Data
Slope 009400 fUft
Discharge 1.47 cfs
Gutter Width 1.00 ft
Gutter Cross SIoF 020000 fUft
Road Cross Slop 020000 fUft
Mannings Coeffic 0.013
Results
Spread 7.79 tt
Flow Area 0.6 fl2
Depth 0.16 ft
Gutter Depres: 0.0 in '
Velocity 2.42 fUs
r
Project Engineer: Doug Desmond
uMitled.fm2 CLC 0.ssoclates Inc FlowMaster v6.1 [614k]
11/20/02 10:06:51 AM (D Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
CARNINE LANE (BAS1N B)
Worksheet for Gutter Section
Project Description
Worksheet Gutter Section -
Type Gutter Section
Soive For Spread
Input Data
Slope 009400 fUft
Discharge 1.90 cfs
Gutter Width 1.00 ft
Gutter Cross Slo{ 020000 fUft
Roed Cross Slop 020000 fUft
Mannings Coeffic 0.013
Results
Spread 8_58 tt
Flow Area 0.7 ft'
Depth 0.17 ft
Gutter Depres~ 0.0 in
Vetociry 2.58 fUs
'
Project Engineer: Doug Desmond
untitled.im2 CLC Associates Inc FlowMaster v6.1 [614k]
11/20/02 10:07:52 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
SHELLY LAKE LANE (BASIN C1)
Worksheet for Gutter Section
Project Description
Worksheet Gutter Section -
Type Gutter Section
Solve For Spread
Input Data
Slope 022000 fbft
Discharge 3.01 cfs
Gutter Width 1.00 ft
Gutter Cross Slo{ 020000 fUft
R6ad Cross Slop 020000 fUft
Mannings Coeffic 0.013
Results
Spread 8.70 ft
Flow Area 0.8 ft2
Depth 0.17 ft
Gutter Depres: 0.0 in
Velocity 3.98 fUs
~
Project Engineer: Doug Desmond
untitled.fm2 CLC Assoclates Inc FlowMaster v6.1 [614kJ
11120/02 10:27:49 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 ot 1
SHELLEY LAKE LANE (BASIN C2)
Worksheet for Gutter Section
Project Description
Worksheet Gutter Section -
Type Gutter Section
Solve For Spread
Inpu1 Data
Slope 022000 fVft
Discharge 3.59 cfs
Gutter Width 1.00 ft
Gutter Cross Slo{ 020000 ft/ft
Road Cross Slop 020000 fUft
Mannings Coeffic 0.013
Results
Spread 9.29 ft
Flow Area 0.9 fl2
Depih 0.19 ft
GutterDepres.- 0.0 in
Velocity 4.16 fUs
Project Engineer: Doug Oesmond
untitled.fm2 CLC Associates Inc FlowMaster v6.1 [614k]
11/20/02 10:28:13 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 USA (203) 755-1666 Page 1 of 1
SHELLEY LAKE LANE (BASIN D)
Worksheet for Gutter Section
Project Description
Worksheet Gutter Section -
Type Gutter Section
Solve For Spread
Input Data
Slope 011000 fUft
Discharge 3.48 cfs
Gutter Width 1.00 ft
Gutter Cross Slol 020000 f t/ft
Road Cross Slop 020000 fUft
Mannings Coeffic 0.013
ResuNs
Spread 10.46 ft
Flow Area 1.1 ft2
Depth 0.21 ft
Gutter Depres: 0.0 in
Velocity 3.18 ftls
Project Enginesr: Ooug Desmond
untitled.fm2 CLC Associates Inc FlowMaster v6.1 [614k]
11/20/02 10:09:05 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1
x. ~
~
~
~
~
~
~
~
~
S
N
I
~
~
B
SHELLEY LAKE 4TH AODITiON
Basin Summary Table
Raad Irnp. House Area Qriv$l'Walk Total Peak GIA Vof. GIA Vol. Bowstring Wal.
Tatal Area Area 1800SF1Lot Area Imp. Area Runoff Flow 1 Req'd Rrov'd Vol. Req'd Provided Number & Type
Basin (SF) (Acres) (5F) Hauses (SF) tSF] (SF) Coeff. (cfs) (cu.ft) (cu.ft) (cu,ft) (cuSk} of Urywells
A~ 58,613 ~ 1.35 I 8,824 1 5.4 1 9,000 1 3,750 ~ 21,574 1 0.43 ~2,04 ~ 524 f 536 ~ 897 ~ 1670 ~ 1-7ype B
B~ 155,712 ~ 3.57 ~ 10,856 ~ 6.0 1 10,800 ~ 4,500 ~ 26,156 ~ 0.28 ~ 2.75 ~ 640 ~ 723 ~ 1381 4 1391 ~ 2-Tyoe B
C ~ 246,398 5.66 ~ 39,333 ~25.0 ~ 45,000 ~ 18,750 i 103,083 ~0.46 ~ 975 ~ 2420 ~ 2425 ~ 6276 f E479
C 1 ~ 94,892 2.98 ~ 15,286 ~ 12.0 ~ 21,600 ~ 9,000 ~ 45,$66 ~0.51 ~ 4.34 l ~ ~ ~ ~
C2 ~ 151,506 ` 148 ~ 24,067 ~ 13.0 ~ 23,400 ~ 9,750 ~ 57,217 ~ 0.42 ~ 5.41 ~ ~ ~ ~ ~ -
D ~ 290,450 ~ 6.67 ~ 98,164 ~ 11A ~ 19,800 ~ 5,250 ~ 43,214 ~ 0.26 ~ 5,00 ~ 976 ~ 2511 ~ 4028 ~ 4142 ~ 1-TypeB
9VOTE: C=[0,9`(IMPERVIOU5 AREA) + 4,15*(PERVI04J5 AREA)]1TOTAL AREA
WHERE C = RUiVOFF COEFF,
*VQLUME PROVIDED 1S BASED 0N A 1' DEPTli {51QE SLOPES ARE lNCLl1DED}
5424134 CLC ASSOCIATES, INC, 4127J2004
~
~
~ ~
~ ~
0
~
~
~
~
z~
~
~
~ .
0
~
. ~
m m m m m m m r ~ ~ ~ m m m ~ ~ ~ m m
PEAK FLOW CALCULATION PROJECT: SNELLEY LAKE BOWSTRING METHOD PROJECT: SHELLEY LAKE
10-Year Design Storm DETENTION BASIN DESIGN BAStN: A
DESIGNER; AKF
BASIN: A DATE; 19-Nav02
Tot. Area 58,613 SF 1,35 Acres
Imp, Area 21,574 SF C= 0.90 Time Increment (min) 5
Per. Area 37,039 SF C= 0.15 Time of Conc. (min) 7.86
Wt. C 0,43 Outflow (cfs) 1
Design Year Flow 10
CASE 1 Area (acres) 1.35
Impervious Area (sq ft) 21574
83 ft. Overland Flow 'C' Factor 0.43
Area' C 0.573 .
Ct = 0.15 Asphaltic Area 12,574
L = 83 it. '
n= 0.40 Time Time Inc, Intens. Q Devel, Vol.ln Vol.Out 5torage
S = 0.0800 (min) (sec) (inlhr) (cfs) (cu ft) (cu ft) (cu ft)
7,86 471 2,56 1.47 928 471 457
Tc = 2.62 min,, by Equation 3-2 of Guidelines
5 300 3,18 1.82 732 300 432
555 ft. Gutter flow 10 600 2.24 1,28 977 600 377
15 900 1.76 1.01 1067 900 167
Z1= 50.0 For Z2 20 1200 1.45 0.83 1133 1200 -67
Z2 = 3.5 Type B=1.0 25 1500 1.23 0.70 1170 1500 -330
n= 0.016 Rolled = 3.5 30 1800 1,05 0.60 1180 1800 -620
S= 0.0092 35 2100 0.91 0.52 1180 . 2100 -920
40 2400 4.81 0.46 1188 2400 -1212
d= 0.1763 ft. Flow Width 8.8 ft, 45 2700 0.74 0,42 1212 2700 -1488
50 3000 0.69 0.39 1248 3000 -1752
55 3300 0,65 0.37 1287 3300 -2013
A R Q Tc Tc total ! Qc 60 3600 0,61 0.35 1324 3600 -2276
0.83 0.09 1.47 5,24 7,86 2.56 1.47 65 3900 0.58 0.34 1361 3900 -2539
10 4200 0.56 4.32 1410 4200 -2790
Qpeak for Case 1= 1.47 cfs 75 4500 0,55 0.32 1481 4500 -3019
80 4800 0.55 0.31 1561 4800 -3239
85 5100 0,53 0.31 1612 5100 -3468
90 5400 0.50 0,29 1585 5400 -3815
CASE 2 95 5700 0.45 0.26 1517 5700 -4183
100 6000 0.49 0.28 1732 6000 -4268
Case 2 assumes a Time of Concentration less than 5 minutes so that the
peak flow =.90(Tc=5 intensity)(Imp. Area) = 1.42 cfs "208" TREATMENT REQUIREMENTS
Minimum "206" Volume Required 524 cu ft
Provided Treatment Volume 536 cu fl
So, the Peak flow for the Basin is the greater of the two flows, DRYWELI REQUIREMENTS -10 YEAR DESIGN STORM
1,47 cfs Maximum Storage Required by Bowstring 457 cu ft
Provided Storage Volume 1472 cu ft (BASEf
Number and Type of Drywells Required 0 Single
1 Double
m m m m mm m m m M m m m M'M
PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE BOWSTRING METH00 PROJECT: SHELLEY LAKE
10•Year Design Storm DETENTION BASIN DESIGN BASIN: B
DESIGNER: AKF
BASIN: B DATE: 19-Nov-02
Tot, Area 155,712 SF 3.57 Acres .
Imp. Area 26,156 SF C= 0.90 Time increment (min) 5
Per. Area 129,556 SF C= 0,15 Time of Conc. (min) 12•95
Wt. C 0.28 Outflow (cfs) 2
Design Year Flow 10
CASE 1 Area (acres) 3.57
Impervious Area (sq ft) 26156
422 ft. Overland Flow 'C' Factor 0.28
Area " C 0,987
Ct = 0.15 Asphaltic Area 15,356
L = 422 ft.
n- 0.40 Time Time Inc. Intens. Q Devel, Vol.ln Vol.Out Storage
S = 0.0300 (min) (sec) (inlhr) (cfs) (cu ft) (cu ft) (cu ft)
12.95 777 1,92 1.90 1974 1554 420 ,
Tc = 9.32 min,, by Equation 3-2 of Guidelines
5 300 3.18 3,13 1260 600 660
414 ft. Gutter flow 10 600 2.24 2.21 1778 1200 578
15 900 1,76 1.73 2016 1800 216
Z1= 50.0 For Z2 20 1200 1.45 1.43 2699 2400 -301
Z2 = 3,5 Type B=1.0 25 1500 1.23 1.21 2139 3000 -861
n= 0,016 Rolled = 3,5 30 1800 1.05 1.04 2138 3600 -1462
S- 0.0094 35 2100 0.91 0.90 2124 4200 -2076 .
40 2400 0.81 0.80 2128 4800 -2672
d= 0.1935 ft. Flow Width 9.7 ft, 45 2700 0.74 0.73 2161 5400 -3239
50 3000 0,69 0.68 2218 6000 -3782
55 3300 0.65 0.64 2281 6600 -4319
A R Q Tc Tc total I Qc 60 3600 0.61 0.61 2341 7200 •4859
1.00 0.10 1.90 3.63 12.95~ 1.92 1.90 65 3900 0.58 0,58 2402 7800 •5398
70 4200 0.56 0,56 2485 8400 •5915
Qpeak for Case 1- 1.90 cfs 75 4500 0.55 0.55 2605 9000 -6395
80 4800 0.55 0.54 2743 9600 -6857
85 5100 0.53 0.53 2828 10200 -7372
90 5400 0.50 0.49 2779 10800 -8021
CASE 2 95 5700 0,45 0.45 2657 11400 -8743
100 6000 0.49 0,48 3031 12000 -8969
Case 2 assumes a Time of Concentration less than 5 minutes so that the
peak flow =.90(Tc=5 intensity)(Imp. Area) = 1,72 cfs "208" TREATMENT REQUIREMENTS
Minimum "208" Volume Required 640 cu ft
Provided Treatment Volume 654 cu ft
So, the Peak flow for the Basin is the greater of the two flows, DRYWELL REQUIREMENTS -10 YEAR DESIGN STORM
1.90 cfs Maximum Storage Required by Bowstring 660 cu ft
Provided Storage Volume 1195 cu ft (BASEI
Number and Type of Drywells Required 0 Single
2 Double
r r m m m mm m M-M.m m m m m m m m m
PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE BOWSTRING METHOD PROJECT: SHELLEY LAKE
10-Year Design Storm DETENTION BASIN DESIGN BASIN: C
DESIGNER: AKF
BASIN; C DATE: 27-Apr-04
Tot. Area 246,398 SF 5.66 Acres Imp. Area 103,083 SF C= 0.90 Time Increment (min) 5
Per. Area 143,315 SF C= 0.15 Time of Conc. (min) 5.00
Wt. C 0.46 Outflow (cfs) 0.9
Design Year Flow 10
CASE 1 Area (acres) 5.66
Impervious Area (sq ft) 103083
114 ft, Overland Flow 'C' Factor 0.46
Area ` C 2.623
Ct = 0.15 Asphaftic Area 58,083
L = 114 ft.
n= 0.40 Time Time Inc. Intens. Q Devel. Vol.in Voi.Out Storage
S = 0.0080 (min) (sec) (inlhr) (cfs) (cu ft) (cu ft) (cu ft)
5.00 300 3.18 6.77 2721 270 2451
Tc = 6.32 min., by Equation 3-2 of Guidelines
5 300 3.18 6.77 2121 270 2451
773 ft. Gutter flow 10 600 2.24 4.77 3351 540 2811
15 900 1.76 3.74 3745 810 2935
Z1 = 50.0 For Z2 20 1200 1.45 3.10 4030 1080 2950
Z2 = 3.5 Type B=1.0 25 1500 1.23 2.62 4193 1350 2843
n= 0.016 Rolled = 3.5 30 1800 1.05 2.24 4253 1620 2633
S= 0.0125 35 2100 0.91 1.94 4272 1890 2382
40 2400 0.81 1.72 4314 2160 2154
d= 0.2744 ft. Flow Width 13.7 ft. 45 2700 0.74 1.57 4411 2430 1981
50 3000 0.69 1.47 4551 2700 1851
55 3300 0.65 1.38 4701 2970 1731
A R Q Tc Tc total I Qc 60 -3600 0.61 1.31 4841 3240 1601
2,01 0.14 5.57 4,66 10.98 2,12 5.57 '65 3900 0.58 1.25 4983 3510 1473
70 4200 0.56 1.20 5170 3780 1390
Qpeak for Case 1= 5.57 cfs 75 4500 0,55 1.18 5433 4050 1383
80 4800 0.55 1.17 5732 4320 1412
85 5100 0.53 1.14 5921 4590 1331
90 5400 0.50 1,06 5628 4860 968
CASE 2 95. 5700 0.45 0.96 5580 5130 450
100 6000 0.49 1.04 6374 5400 974
Case 2 assumes a Time of Concentration less than 5 minutes so that the
peak flow =.90(Tc=5 intensity)(Imp, Area) = 6.77 cfs "208" TREATMENT REQUIREMENTS
Minimum "206" Volume Required 2,420 cu ft
Provided Treatment Volume 2,425 cu ft
So, the Peak flow for the Basin is the greater of the two flows, DRYWELL REQUIREMENTS -10 YEAR DESIGN STORM
6,77 cfs Maximum Storage Required by Bowstring 2950 cu ft
Provided Storage Volume 6479 cu ft
Number and Type of Drywells Required 1 Single
0 Double
PEAK FLODU CALCULATION PRO.#EGT: SHELI.EY LA4CE BOUVSTRING MIETHOD PROJECT: SHELLEY LAKE
10-Year 1]esign Starm DETENTION BASfN DESIGN BAS1N: C
DESIGN ER: AKF
gp,SIN; C DATE; 17-Jun-03
Tat. Area 246,39$ 6F 5.66 ACrBs
Imp. Area 103,083 5F C = b,BO Time Increment (min) 5
Per. Area 143,315 SF C= 0.15 Tfine of Conc. (min) 5.00
Wt. C 0,46 Outflow (cfs) 0.9
pesign Year Flow 10
CqSE 1 Area (acres) 5.66
Impen+ious Area (sq ft) 1030$3
114 ft. Overland FlOw 'C' Factor 0.46
Area * C 2.623
Ct = 0.15 Asphaltic Area 58,083
L, = 114 f6~
n- O.qp Time Time Inc. Intens. Q Devel. Vol.ln Va1,0ut Starage
S = 0,0480 (min) {sec} (inlhr) (cfs) (cu ft) (cu ft) {cu fk}
5.00 304 3,18 6.77 2721 270 2451
Tc ~ 8.32 m~n,, by Equatian 3-2 of Guidelines
5 300 3.18 6.77 2721 270 2451
773 ft, Gutter flow 10 600 2,24 4.17 3351 540 2811
15 900 4,76 3.14 3745 810 2935
21 = 50.0 Far Z2 70 1200 1,45 110 4030 1080 2954
Z2 = 3.5 Type B=1A 25 1500 4.23 2.62 4193 1354 2843
n= 0.01 6 Rolled = 3,5 30 1800 1.05 2.24 4253 1620 2633
S= 0.0125 35 2100 0.91 1.94 4272 1890 2382
40 2400 0.81 1,72 4314 2180 2154
d= 0.2144 ft. Flaw 1Nitlth 117 fl. 45 2700 0.74 1.57 4411 2430 1981
50 3000 4.69 1,47 4551 2700 1859
55 3300 M5 1.38 4701 2910 1737
A R Q TC Tc tatal I QC 60 3600 0.61 9.31 4541 3240 1601
2,01 0,34 5,57 4,66 10.98 2.12 5.57 65 3900 0.58 1.25 4983 3510 1473
70 4200 0,56 1.20 5174 3780 1390
Qpeak fflr Case 1_ 5.57 cfs 75 4500 0,55 1.18 5433 4050 1383
80 4800 0.55 1,17 5732 4320 1412
85 5100 0.53 1,14 5921 4590 1331
90 5400 0.54 9.06 5828 4860 968
CASE 2 95 5700 0.45 0.96 5580 5130 450
100 6000 0.49 1.44 6374 5404 974
Case 2 assumes a Time of Concentration Iess than 5 minutes sQ Ihal the
peak flow =.90(Tc=5 in#enslly)(Imp. Area) = 6.77 cfs "208" TREATMENT REQLfIREMENTS ~
Minimum "20$" Vvlume Required 2,424 cu ft
Provideci Treatment Valume '1025 cu ft
Sa, #he Peak flow for the Basin is the greaier ot Ihe iwo flows, DRYWELL REQU#REMENTS - 10 YEAR DESIGN STORM
6,77 cfs Maximum Storage Required by Bawstnng ft
u
Provitletl Starage Volume 4. - cu ft
Number and 1'ype 4f Drywells Required 1 Single 0 Double
PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE
10-Year Design Storm
BASIN: C1
'
Tot. Area 94,892 SF 2.18 Acres
Imp. Area 45,866 SF C= 0.90
Per. Area 49,026 SF C= 0.15
Wt. C 0.51
CAS E 1
ti.====___
79 ft. Overland Flow
Ct = 0.15
L = 79 ft.
n = 0.40
S = 0.0100 Tc = 4.74 min., by Equation 3-2 of Guidelines
542 ft. Gutter flow
Z1 = 50.0 For Z2
Z2= 3.5 TypeB=1.0
n = 0.016 Rolled = 3.5 '
S = 0.0214
d= 0.1930 ft. Flow Width 9.7 ft.
A R Q Tc Tc totai I Qc
'
1.00 0.10 2.85 3.16 7.90 2.56 2.85
Qpeak for Case 1= 2.85 cfs
CAS E 2
Case 2 assumes a Time of Concentration less than 5 minutes so that the
peak flow =.90(Tc=5 intensity)(Imp. Area) = 3.01 cfs
So, the Peak flow for the Basin is the greater of the two flows,
3.01 cfs
PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE
10-Year Design Storm
BAS I N : C2
Tot. Area 151,506 SF 3.48 Acres
Imp. Area 57,217 SF C= 0.90
Per. Area 941289 SF C= 0.15
Wt. C 0.43
CAS E 1
114 ft. Overland Flow
Ct = 0.15
L = 114 ft.
n = 0.40
S = 0.0080
Tc = 6.32 min., by Equation 3-2 of Guidelines
773 ft. Gutter flow
Z1 = 50.0 For Z2
Z2= 3.5 TypeB=1.0
n = 0.016 Rolled = 3.5 S = 0.0125
d= 0.2195 ft. Flow W idth 11.0 ft.
A R Q Tc Tc total I Qc
1.29 0.11 3.07 5.41 11.73 2.04 3.07
Qpeak for Case 1= 3.07 cfs
'
CAS E 2
Case 2 assumes a Time of Concentration less than 5 minutes so that the
peak flow =.90(Tc=5 intensity)(Imp. Area) = 3.76 cfs
So, the Peak flow for the Basin is the greater of the two flows,
3.76 cfs
m m m m m m m ~ m m m m m m m m m m m
PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE BOWSTRING METHOD PROJECT: SHELLEY LAKE
10-Year Design Storm DETENTION BASIN DESIGN BASIN: D
DESIGNER: AKF
BASIN: D DATE: 27-Apr-04
Tot. Area 290,450 SF 6.67 Acres
Imp. Area 43,214 SF C= 0.90 Time Increment (min) 5
Per. Area 247,236 SF C= 0.15 Time of Conc. (min) 12.18
Wt. C 0.26 Outflow (cfs) 1
Design Year Flow 10
CASE 1 Area (acres) 6.67
ImpeNious Area (sq ft) 43214
300 ft. Overland Flow 'C' Factor 0.26
Area * C 1.744
Ct = 0.15 Asphaltic Area 23,414
L = 300 ft.
n= 0.40 Time Time Inc. Intens. Q Devel. Vol.ln Vol.Out Storage
S = 0.0300 (min) (sec) (in/hr) (cfs) (cu ft) (cu ft) (cu ft)
12.18 731 1.99 3.48 3407 731 2676
Tc = 7.59 min., by Equation 3-2 of Guidelines
5 300 3.18 5.54 2228 300 1928
781 ft. Gutter flow 10 600 2.24 3.91 3143 600 2543
15 900 1.76 3.06 3516 900 2616
Z1= 50.0 For Z2 20 1200 1.45 2.54 3672 1200 2472
Z2 = 3.5 Type B=1.0 25 1500 1.23 2.14 3748 1500 2248
n= 0.016 Rolled = 3.5 30 1800 1.05 1.83 3751 1800 1951
S= 0.0183 35 2100 0.91 1.59 3731 2100 1631
40 2400 0.81 1.41 3740 2400 1340
d= 0.2143 ft. Flow Width 10.7 ft. 45 2700 0.74 1.29 3801 2700 1101
50 3000 0.69 1.20 3903 3000 903
55 3300 0.65 1,13 4016 3300 716
A R Q Tc Tc total I Qc 60 3600 0.61 1.07 4121 3600 521
123 0.11 3.48 4,59 12.18 1.99 3.48 65 3900 0.58 1.02 4230 3900 330
70 4200 0.56 0,98 4378 4200 178
Qpeak for Case 1= 3.48 cfs 75 4500 0.55 0,97 4591 4500 91
80 4800 0.55 0.96 4834 4600 34
85 5100 0.53 0,93 4986 5100 -114
90 5400 0.50 0.87 4900 5400 -500
CASE 2 " 95 5700 0.45 0.79 4685 5700 -1015
.100 ' 6000 0.49 0.86 5345 6000 -655
Case 2 assumes a Time of Concentration less than 5 minutes so that the
peak flow =.90(Tc=5 intensity)(Imp. Area) = 2.84 cfs "208" TREATMENT REQUIREMENTS
Minimum "208" Valume Required 976 cu ft
Provided Treatment Volume 2,511 cu ft
So, the Peak flow for the Basin is the greater of the two flows, DRYWELL REQUIREMENTS -10 YEAR DESIGN STORM
3.48 cfs Maximum Storage Required by Bowstring 2676 cu ft
Provided Storage Volume 4142 cu ft
Number and Type of Drywells Required 0 Single 1 Double
m m m m m m m m m m m m m m m m m m m
PEAK FLOW CALCULATION PROJECT: SHELLY LAKE 4TH BOWSTRING METHOD PROJECT; SHELLY LAKE 4TH
50-Year Design Storm DETENTION BASIN DESIGN BASIN: A
~ DESIGNER AKF
BASIN: A DATE: 27-Apr-04
Tot. Area 58,613 SF 1,35 Acres Time Increment (min) 5
Imp. Area 21,574 SF C= 0.9 Time of Conc. (min) 10.17
Perv. Area 37,039 SF C= 0.15 Outflow (cfs) 1
Wt. C= 0.43 Design Year Flow 50
Area (acres) 1.35
CASE 1 Imperoious Area (sq ft) 21574
'C Factor 0.43
83 ft. Overland Flow Area' C 0.579
Treatment Area 12,574
Ct = 0.15
L= 83 ft. Time Time Inc. Intens. Q Devel. Vol.ln Vol.Out Storage
n= 0.40 Imin1 (sec) Iinlhr) (cfs) (cu ft) (cu ft) (cu ft)
S= 0.0080 10.17 610 3.17 1.84 1507 610 897
Tc = 5.22 min., by Equation 3-2 of Guidelines 5 300 4.58 2.65 1065 300 765
10 600 321 1.86 1492 600 892
555 ft. Gutter flow 15 900 2.44 1.41 1564 900 664
20 1200 1.98 1.15 1613 1200 413
Z1 = 50.0 For Z2 25 1500 1.68 0.97 1656 1500 156
Z2 = 3.5 Type B=1.0 30 1800 1.46 0.84 1695 1800 -105
n= 0,016 Rolled = 3.5 .35 2100 1.30 0,75 1734 2100 -366
S= 0.0092 40 2400 1.18 0.68 1776 2400 -624
45 2700 1.08 0.63 1823 2704 -877
d= 0.1920 ft. Flow Width 9.6 ft. 50 3000 1.01 0.58 1869 3000 -1131
55 33000.94 0.54 1909 3300 -1391
60 3600 0.88 0.51 1942 3600 -1658
A R Q Tc Tc total I Qc 65 3900 0.83 0.46 1977 3900 -1923
0.99 0.10 1.84 4.95 10.17 3.17 1.84 70 4200 0.79 0.46 2026 4200 -2174
75 4500 0,77 0.45 2098 4500 -2402
Qpeak for Case 1= 1.84 cfs 80 , 4800 0,75 0.44 2184 4800 -2616
85 . 5100 0,73 0.42 2254 5100 -2846
' 90 -5400 0.70 0.40 2267 5400 -3133
95 5700 0,66 0.38 2247 5700 -3453
CASE 2 100 6000 0.68 0.39 2443 6000 -3557
Case 2 assumes a Time of ConcentraGon less than 5 minutes so lhat the "208" TREATMENT REQUIREMENTS
peak flow =.90(Tc=5 intensity)(Imp. Area) = 2.04 cfs Minimum "208" Volume Required 524 cu ft
Provided Treatment Volume 536 cu ft
DRYWELL REQUIREMENTS - 50 YEAR DESIGN STORM
So, the Peak flow for the Basin is the greater of the two flows, Maximum Storage Required by Bowstring 897 cu ft
2.04 cfs Provided Storage Volume 1010 cu ft
Number and Type of Drywells Required 0 Single
1 Double
r ~ m m m m m m m m i m ~ ~ m m m m r
PEAK FLOW CALCULATION PROJECT: SHELLY LAKE 4TH BOWSTRING METHOD PROJECT: SHELLY LAKE 4TH
50•Year Design Storm DETENTION BASIN DESIGN BASIN: B
3 DESIGNER DNR
BASIN: B DATE; 27-Apr-04
Tot. Area 155,712 SF 3.57 Acres Time Increment (min) 5
Imp. Area 26,156 SF C= 0,9 Time of Conc. (min) 12.63
Perv. Area 129,556 SF C= 0,10 Outflow (cfs) , 2
Wt. C= 0.28 Design Year Flow 50
Area (acres) 3.57
CASE 1 Impervious Area (sq ft) 26156
'C Factor 0.28
422 ft. Overland Flow Area' C • 1.001
Treatment Area 15,356
Ct= 0.15
L= 422 ft. Time Time Inc. Intens. Q Devel. Vol.ln Vol.Out Storage
n = 0.40 (min) (sec) (iNhr) (cfs) (cu ft) (cu R) (cu ft)
S= 0.0300 12.63 758 2.75 2.75 2797 1516 1282
Tc = 9.32 min., by Equation 3-2 of Guidelines 5 300 4.58 4.58 1842 600 1242
10 600 3.21 3.21 2581 1200 1381
414 ft. Gutter flow 15 900 2.44 2.44 2829 1800 1029
20 1200 1.98 1.98 2890 2400 490
Z1= 50.0 For Z2 25 1500 1.68 1.68 2949 3000 -51
Z2 = 3.5 Type B=1.0 30 1800 1.46 1.46 3005 3600 -595
n= 0.016 Rolled = 3.5 35 2100 1.30 1.30 3064 4200 -1136 ,
S= 0.0094 40 2400 1.18 1.18 3132 4800 -1668
45 2700 1.08 1.08 3208 5400 -2192
d= 02223 ft. Flow Width 11.1 ft. 50 3000 1.01 1.01 3284 6000 -2716
55 3300 0.94 0.94 3349 6600 -3251
60 3600 ' 0.88 0.88 3404 7200 -3796
A R Q Tc Tc total I Qc 65 3900 0.83 0.83 3462 7800 -4338
1.32 0.11 2.75 3.31 12,63 2.75 2,75 70 4200 0.79 0.60 3544 8400 -4856
75 4500 0.77 0.77 3667 9000 -5333
Qpeak for Case 1= 2.75 cfs 80 4800 0.75 0.75 3817 9600 -5783
85 5100 0,73 0.73 3936 10200 -6264
90 5400 0.70 0.70 3955 10800 -6844
95 5700 0,66 0.66 3921 11400 -7479
CASE 2 100 6000 0.68 0.68 4260 12000 -7740
Case 2 assumes a Time of Concentration less than 5 minutes so that the "208" TREATMENT REQUIREMENTS
peak flow =,90(Tc=5 intensity)(Imp. Area) = 2.47 cfs Minimum "208" Volume Required 640 cu ft
Provided Treatment Volume 723 cu ft
DRYWELL REQUIREMENTS - 50 YEAR DESIGN STORM
So, the Peak flow for the Basin is the greater of the two flows, Maximum Storage Required by Bowstring 1381 cu ft
2.75 cfs Provided Storage Volume 1391 cu ft
Number and Type of Drywells Required 0 Single
2 Double
~ m m m m m m m m m m m m m m m m m m
PEAK FLOW CALCULATION PROJECT: SHELLY LAKE 4TN BOWSTRING METHOD PROJECT: SHELLY LAKE 4TH
50-Year Design Storm DETENTION BASIN DESIGN BASIN; C
~ DESIGNER AKF
BASIN: C DATE: 27-Apr-04
Tot. Area 246,398 SF 5.66 Acres Time Increment (min) 5
Imp. Area 103,083 SF C= 0.9 Time of Conc. (min) 10.57
Perv. Area 143,315 SF C= 0.10 Outflow (cfs) . 0.9
Wt, C= 0.46 Design Year Flow 54
Area (acres) 5.66
CASE 1 Impervious Area (sq ft) 103083
'C' Factor 0.46
114 ft, Overiand Fiow Area' C 2.602
Treatment Area 58,083
Ct= 0.15
L= 114 ft. Time Time Inc. Intens. Q Devel. Vol.ln Vol.Out Storage
n= 0.40 (min) (sec) (inlhr) (cfs) (cu ft) (cu ft) (cu ft)
S= 0.0080 10.57 634 3.10 8.06 6846 571 6275
Tc = 6.32 min., by Equation 3-2 of Guidelines 5 300 4.58 11.91 4789 270 4519
10 600 321 6.34 6709 540 6169
773 ft. Gutter flow 15 900 2.44 6.35 7086 810 6276
20 1200 1.98 5.15 7296 1080 6216
Z1 = 50.0 ForZ2 25 1500 1.68 4.36 7483 1350 6133
Z2 = 3.5 Type B=1.0 30 1800 1.46 3.80 7653 1620 6033
n= 0,416 Rolled = 3.5 35 2100 1.30 3.38 7824 1890 5934
S= 0.0125 40 2400 1.18 3.06 8014 2160 5854
45 2700 1.08 2.82 8221 2430 5791
d= 0.3152 ft. Flow Width 15.8 ft, 50 3000 1.01 2.62 8426 2700 5726
, 55 3300 0.94 2.45 8604 2970 5634
60 3600 0.88 2.29 8753 3240 5513
A R Q Tc Tc total I Qc 65 3900 0.83 2.16 8908 3510 5398
2.66 0.16 8.06 4,25 10.57 3.10 8.06 70 4200 0.79 2.07 9127 3780 5347
75 4500 0.77 2.00 9449 4050 5399
Qpeak for Case 1= 8,06 cfs 80 4800 0.75 1.96 9839 4320 5519
85 5100 0.73 1.91 10151 4590 5561
90 5400. 0.70 1.82 10209 4860 5349
95 5700 0.66 1.71 10120 5130 4990
CASE 2 100 6000 0.68 1.77 10999 5400 .5599
Case 2 assumes a Time of Concentration less than 5 minutes so that the "208" TREATMENT REQUIREMENTS
peak flow =.90(Tc=5 intensity)(1mp. Area) = 9.75 cfs Minimum "208" Volume Required 2,420 cu ft
Provided Treatment Volume 2,425 cu ft
DRYWELL REQUIREMENTS - 50 YEAR DESIGN STORM
So, the Peak flow for the Basin is the greater of the lwo flows, Maximum Storage Required by Bowstring 6276 cu ft
9.75 cFs Provided Storage Volume 6479 cu ft
Number and Type of Drywells Required 1 Single
0 Double
50-Year Design Storm
'
BASIN: C1
' Tot. Area 94,892 SF 2.18 Acres
Imp. Area 45,866 SF C= 0.9
' Perv. Area 49,026 SF C= 0.15
Wt. C - 0.51
CASE 1
79 ft. Overland Flow
Ct = 0.15
L = 79 ft.
n = 0.40
S= 0.0100
Tc = 4.74 min., by Equation 3-2 of Guidelines
542 ft. Gutter flow
Z1 = 50.0 For Z2
Z2= 3.5 TypeB=1.0
n = 0.016 Rolled = 3.5 ,
, S = 0.0214
d= 0.2232 ft. Flow Width 11.2 ft.
A R Q Tc Tc total I Qc
, 1.33 0.11 4.20 2.87 7.61 3.76 4.20
Qpeak for Case 1= 4.20 cfs
'
CASE 2
Case 2 assumes a Time of Concentration less than 5 minutes so that the
peak flow =.90(Tc=5 intensity)(Imp. Area) = 4.34 cfs
So, the Peak flow for the Basin is the greater of the finro flows,
4.34 cfs
PEAK FLOW CALCULATION PROJECT: SHELLY LAKE 4TH
50-Year Design Storm
BAS I N : C2
Tot. Area 151,506 SF 3.48 Acres
Imp. Area 57,217 SF C= 0.9
Perv. Area 94,289 SF C= 0.15
Wt. C = 0.43
CAS E 1
114 ft. Overland Flow
Ct = 0.15
L = 114 ft.
n = 0.40
S= 0.0080
Tc = 6.32 min., by Equation 3-2 of Guidelines
773 ft. Gutter flow
Z1 = 50.0 For Z2
Z2 = 3.5 Type B= 1.0
n = 0.016 Rolled = 3.5 S = 0.0125
d= 0.2530 ft. Flow Width 12.7 ft.
A R Q Tc Tc total I Qc
' 1.71 0.13 4.48 4.92 11.24 2.98 4.48
' Qpeak for Case 1= 4.48 cfs
CAS E 2
Case 2 assumes a Time of Concentration less than 5 minutes so that the
peak flow =.90(Tc=5 intensity)(Imp. Area) = 5.41 cfs
So, the Peak flow for the Basin-is the greater of the two flows,
5.41 cfs
PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE
50-Year Design Storm
BASIN: C1A
Tot. Area 49,135 SF 1.13 Acres
Imp. Area 251375 SF C= 0.9
Perv. Area 23,760 SF C= 0.15
Wt. C = 0.54
CASE 1
78 ft. Overland Flow
Ct = 0.15
L = 78 ft.
n = 0.40
S= 0.0100
Tc = 4.71 min., by Equation 3-2 of Guidelines
523 ft. Gutter flow
Z1 = 50.0 For Z2
Z2= 3.5 TypeB=1.0
n = 0.016 Rolled = 3.5 S = 0.0214
d= 0.1760 ft. Flow Width 8.8 ft.
A R Q Tc Tc total I Qc
0.83 0.09 2.23 3.24 7.95 3.67 2.23
Qpeak for Case 1= 2.23 cfs
CAS E 2
Case 2 assumes a Time of Concentration less than 5 minutes so that the
peak flow =.90(Tc=5 intensity)(Imp. Area) = 2.40 cfs
So, the Peak flow for the Basin is the greater of the finro flows,
2.40 cfs
PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE
50-Year Design Storm
BAS I N : C2A
Tot. Area 65,401 SF 1.50 Acres
Imp. Area 24,612 SF C= 0.9
Perv. Area 401789 SF C= 0.15
Wt. C = 0.43
CAS E 1
131 ft. Overland Flow
Ct = 0.15
L = 131 ft.
n = 0.40
S= 0.0200
Tc = 5.22 min., by Equation 3-2 of Guidelines
402 ft. Gutter flow
Z1 = 50.0 For Z2
Z2 = 3.5 Type B= 1.0
n = 0.016 Rolled = 3.5 ' S = 0.0220
d= 0.1810 ft. Flow W idth 9.1 ft.
A R Q Tc Tc total I Qc
'
0.88 0.09 2.44 2.41 7.63 3.76 2.44
' Qpeak for Case 1= 2.44 cfs
CAS E 2
Case 2 assumes a Time of Concentration less than 5 minutes so that the
peak flow =.90(Tc=5 intensity)(Imp. Area) = 2.33 cfs
So, the Peak flow for the Basin is the greater of the finro flows,
2.44 cfs
m m r m m m r r m r r~ m m m m m m m r
PEAK FLOW CALCULATION PROJECT; SHELLY LAKE 4TH BOWSTRING METHOD PROJECT: SHELLY LAKE 4TH
50-Year Design Storm DETENTION BASIN DESIGN BASIN: D
F DESIGNER DNR
BASIN: D DATE: 27-Apr-04
Tot. Area 290,450 SF 6.67 Acres Time Increment (min) 5
Imp. Area 43,214 SF C= 0.9 Time of Conc. (min) 11.79
Perv, Area 241,236 SF C= 0.10 Outflow (cfs) 1
Wt. C= 0.26 Design Year Flow 50
Area (acres) 6.67
CASE 1 Imperoious Area {sq ft} 43214
'C' Factor 0.26
300 ft. Overland Flow Area' C 1.734
Treatment Area, ' 23,414
Ct = 0.15 ' L= 300 ft. Time 'Time Inc: Intens. Q Devel. Vol.ln Vol.Out Storage
n= 0,40 (min) (sec) (in/hr) (cfs) (cu ft) (cu ft) (cu ft)
S= 0.0300 11.79 707 2.88 5.00 4735 707 4028
Tc = 7.59 min., by Equation 3-2 of Guitlelines 5 300 4.58 7,94 3191 300 2891
10 600 321 5,56 4470 600 3870
781 ft. Gutter flow 15 900 2,44 4.23 4827 900 3927
20 1200 1.98 3.43 4946 1200 3746
Z1 = 50.0 For Z2 25 1500 1.68 2,91 5058 1500 3558
Z2 = 3.5 Type B=1.0 30 1800 1.46 2.53 5162 1800 3362
n= 0.016 Rolled = 3.5 35 2100 1.30 2.25 5269 2100 3169
S= 0.0183 40 2400 1.18 2.04 5390 2400 2990
45 2700 1.08 1.88 5524 2700 2824
d= 0.2453 ft. Flow Width 12.3 ft. 50 3000 1.01 1.75 5658 3000 2658
, 55 3300 0.94 1.63 5773 3300 2473
60 3600 0.88 1.53 5870 3600 2270
A R Q Tc Tc total I Qc 65 3900 0.83 1.44 5971 3900 2071
1,61 0.12 5.00 4,19 11,79 2.88 5.00 70 4200 0.79 1.38 6115 4200 1915
75 4500 0.77 1.34 6329 4500 1829
Qpeak for Case 1= 5.00 cfs 80 4800 0.75 1.31 6588 4800 1788
85 5100 0.73 1.27 6195 5100 1695
90 5400 0.70 1.21 6832 5400 1432
95 5700 0.66 1.14 6771 5700 1071
CASE 2 100 6000 0.68 1.18 7358 6000 1356
Case 2 assumes a Time of Concentration less than 5 minutes so that the "208" TREATMENT REQUIREMENTS
peak flow =.90(Tc=5 intensity)(1mp. Area) = 4.09 cfs Minimum "208" Volume Required 976 cu ft
Provided Treabnent Volume 2,511 cu ft
DRYWELL REQUIREMENTS - 50 YEAR DESIGN STORM
So, the Peak flow for the Basin is the greater of the two flows, Maximum Storage Required by Bawstring 4028 cu ft
5.00 cfs Provided Storage Volume 4142 cu ft
Number and Type of Drywells Required 0 Single
1 Double
~ . .
Cl) ~ y
~ - ~
. ' _ _ _ ~ '(T~•' I ~~f~`'~ ~
(41
-
~
cn o
L 0 ~
J ~ r
~
. i • ~ ''~i
' ~ • ' - , ~ ~ ' • ~ ~ -
• `t..,~; ~ ' X.f"p~ :'rh~~.~ ;f 3~;aS'~ ,T, ~xy„~`~:
a' a~, ! . M ~ w t~'~a ~ r ~ ~ - . iy~%Rl~k,.'~~1`'.^ i ,t~ ' ~r'
3
, ' f y~~"~~ ~ w'J 'i'y, r!"~ P. ~ ~pr ~ ' ~ a ti•
~,4nI
. .1`;~: ; ~~.v , s I ;R, r s'.•` ~'t ' ~~c~1` 'j L'i` , , ~ ~ ' „ .
. ' 1 , t . . ~ , t', l~. - ri . ~a,,~¢ 1 ~~c' i , ':y~ if t ~k",~,` ~ ' t t•. , '.i~~ iS i n{ r~6 ~~S + „ . +1
' ^ ' S ~ i~:•" ~ ri~~~~;~~ - ~ ,~'~1, r"~~,c,W; <;;;r'~~' YiP,t,+l~qs,~.!',~J1~j~ ti'„ l
1o
, ' ~ ~ ` ~ . ~ ' •?r'' {~~rt' ~ ~ ..',;at;;,'d 1'xr, ~ t~,,, * ,~t ,'r, ~ .~ff~,'~.r ~1,~; x, Nt" ` :n ~r ? ,{,q ; s . .
~ A.`~ f~ ~ ~ 'E ~'t}g~r~l•i,1,~~'.i;~~.'k ' 1. E{A',e i r~ ,~'r's'' i,c~~~~ . . ~rf~ .
• t y ~ . i. ~ti ~ y '
y
~ . ~ ~ , ~ t~e~~ . ~ ' ~ ~nY:' • ~.H' ~.N.y '~y r"E~, a`~'s.
~ . . ~ , e ' Ni ~ 1 `1' i' ~ ,~,r.r -ys , ,r' • ' 'Y i,''y ' ' ' y:,'• . .
. 1 , -'t` ~W,~ ~rt~ i ' ~'i •'1~f~; _'~r.'_ ~ . + ~
ry ~ - • , ~ ,
, ~ ~ ,
~ ~ ~ n, ~ r.~ ~ '4•' ' „y,. r ' j~i'4 ~ '9~
Y~~~ I~.~ `4~~ 'w~y u~•^ \ ~-F~' ' ~7f ~ ~ ~.rt r ~t ,Y,` ~.J ,.~k~
- t ~'n a , ' Y ~'~~4~a Y~•wJ1~'~iK/ li ~ ~L'/,, 'Y~'~~•^ f!I~~ , .i'~ir~~:'SyI~'FL 1 4''r~A~~,1 fy.. 7 i ~ . . _ ~~~~i~'~
tI~ _~➢Gt'n~i;~!?k~~+,4C~~Ff~•'.,Y 'yii~`4,.~ y; '•r_..
.;aI~'
~ , . ' ' . . , ~,~'w.i't' . . . . ,i `r i~~~~f..}~~wA ~...CsXuit ..:.w. •:7lili~.~ . . ,
scenario: gase
S7.YR CR'S~ ~oflA
5KEl
\
Cyl 2saa
a9A•CFs
oa+za a's
1
m,.,eCPS.
;
,
,
t <
~ . . . . . . . , . Q.: f 1 f,
~
- 1 ~
u
~ ~ i1~, tlr
~
,MPCFtAAV
~P0,oC
~
~
Scenario: Base
clc associates '
Label Length Section Material Mannings Upstream Downstream Constructed Rim Average Average Additional Hydraulic Hydraulic Total
(ft) Size n Invert Invert Slope Elevation Pipe Velocity Flow Grade Grade System
Elevation Elevation (ft/ft) (ft) Cover (ftls) (cfs) Line In Line Out Flow
(ft) (ft) (ft) (ft) (ft) (cfs)
I-1 2,038.66 1.29 2,037.55 2,037.55 1.29
P-2 15.00 12 inch PVC 0.010 2,036.76 2,036.51 0.016667 0.95 6,07 2,037.55 2,037,56 1.29
I-6 2,038.51 3.04 2,037.56 2,037.56 4.33
P-3 25.00 12 inch PVC 0.010 2,036.51 2,036.24 0.010800 1.13 5.51 2,037.56 2,037.34 4.33
I-3 2,038.51 4.23 2,037.34 2,037.34 8.56
P-4 82.00 15 inch PVC 0.010 2,036.04 2,035.34 0.008537 1.96 6.98 2,037.34 2,036.48 8.56
I-7 2,039.28 1.18 2,036.44 2,036.44 9.74
P-5 137.00 18 inch PVC 0.010 2,035.24 2,033.84 0.010219 3.96 8.47 2,036.44 2,034.77 9,74
I•8 2,040.71 0.00 2,034.94 2,034.94 9.74
P-6 60.00 18 inch PVC 0.010 2,033.74 2,033.34 0.006667 1.82 7.11 2,034.54 2,034.43 9.74
0-1 2,033.00 2,034.43 2,034.43 9.74
Title: Shelly Lake 4th Addition Project Engineer. Doug Desmond
j:ldocument1s0201341p1anchange10yr.stm CLC Associates Inc StormCAD v4.1 (428]
06117/03 10:23:56 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1
~r
Pr~le
Scenario: Base
Labe: 1-6
Rim: 2,038.51 ~ Labe : I-1
Sump. Labe : I-3 ~2,036-51 ft Rim: 2,038.66 ft
Rim: 2,038.51 ft Sump: 2,036.76 ft
Sump: 2,036-04 ft
21039-00
~
: ~
2 038.00 E evation (ft)
,
2037.00
21036-00
2+75 2+ +p5 +2
%ion ft
Labe: P-3 Labe: P-2
Up. Invert: 2,036.51 ft Up. Invert: 2,036.76 ft
Dn. Invert: 2,036.24 ft Dn. Invert: 2,036.51 ft
~ L:15.Oa ft
L. 25-00 ft
Size: 12 inch Size: 12 inch
S. 0.0 10800 fVft
~ S: 0.0 16667 fVft Tftle: Shelly Lake 4th Addition Project Engirteer: Doug ~smond
j:ldocumentls0201341p1anchange1 0yr.stm CLC Assxiates Inc StormCAD v4.1 (4281
06f17/03 09:15:03 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 U5A +1-203-755-1666 Page 1 of 1
~
Profile
Scenario: Base
Label: 1-8
Rirrt 2,040.71 ft
Surrp: 2,033.74 ft
. _ . _ _ . _ Labe l: 1-7 2,041.00
.-RrrY 2;03928^ft
Surrp: 2,03524 ft _ Rirn 2,038.51 ft
5ump: 2,Q36:04 ff 2,040.00
- • ~ - - - - ~ 2,039.00
2,038.00
Elevation (ft)
_ . _ _ , a - - - - . - - - - - - 2,037.00
12,036.00
2,035.00
2,034.00
° 2,033.00
0+00 0+50 1+00 +~on 2+00 2+50 3+00
.abel: 4-1 Label: P-6 Label: P5
bm 2,033.40 ft Up. Invert 2,033.74 ft Up. Inve~: 2,03524 ft Label: P~
3urrp: 2,033.00 ft Dn. Invert 2,033.34 ft Dn. Invert 2,033.84 ft Up. Invert: 2,036.04 ft
L: 60.00 ft L:137.00 ft Dn. Invert 2,035.34 ft
Si~e:16 inch SiZe:18 inch L: 82.00 ft
S: 0.006667 ft~t S: 0.010219 tVft Size:15 inch
S: 0.008537 ftfft
Title: Shelly Lake 4th Addition Project Engineer: Doug Desmond
j:ldocument1s0201341planchange1 0yr.stm CLCAssaiateslnc StormCADv4,1 (428]
06117/03 10:23,30 AM @)Haestad Methods, Inc, 37 Brookside Road Waterbury, CT 06708 USA +1.203.755-1668 Page i ot 1
~
~
CNL
~
Rip Rap Calculations
Culvert into Pond C
'
Pipe Diameter = 18 inches
Flow Velocity = 7.11 ft/sec
Flow Quantity = 9.74 cfs
Tailwater Depth = 1.00 ft
D5o = 0.28 ft
3Do = 4.5 ft
-.Q factor based upon Tailwater Depth 1.8Q or 3Q = 29.2 cfs
La = 26.4 ft
W= 3Do + 0.4La = 15.1 ft
Minimum Rip-Rap Mat Thickness = 1.0 ft
Minumum Stone Diameter = 5 inches
1
'
, < ~ • , < °'t3:.`s, . ,.i • ' ,F'o, ' , , ~~.MY„ rt. .
, , ~,r~m. n r~ •t'~ . . , ' ~ ~ J~ ~~L' ':Y!~ i h:d~,i,~ArL+,:~4~d ' . k, r • r . f, r ~ , , ' . •
,r ~t ~ ~ , , e 4 ; ~ ~ ~ 1 ~c~~ ~ 4 ~:t.~~ - ~ 4M c ~ ( , ~ ~ ,-i - - .
. ~ ~ ~ ~ I ~ ~~r
n~~ ' n . - • I- - - y ~ , . I- 'r ~ ~ , ~-h 1- -
' y'- . - . . t~ d £lf~. 'A~ +Y , ~ 1':,~, i' ~ ' .
C• , ~ ~ ~ ~ M'R I . ~ . ' ~ . fl ~`I. . ~ • `
1 . .
. i
i ' ~
~
1 .
~~1~ ~ P . •4 ,lly~~:~*' r.~~1~ti.~M', t~~ ~'r ~~•i,. ~ti 1 r ~ ~1 i. : ' ~
M , , ~ ~ ~ ~r, , r ~sn , _ r ~ . ' , , . t_, , „ : • . , ~
~,.~~r,;~l'~d~i:la~~.i.~~}~~5~'i~~~~li~0~+~~,'vi~~~~e~~st'~,"~+"4~ii41L",~~~~Hi~ ~ • . ~
. !1~.~"(,.~' 4 ~ ,r'n. ; ~ " ~ a' w~y ~~~jy,
' ~ ~ `3~~~~r', :ln.~`{n, ~~_}~i,i~~~,i.'•~,o':~~~,~w~,,': i»~~ ~ ' ' ~
~~t .
, > , `~~ti'"_~6,'Y,'~~r~`~'~~ ~ R ~.~K'rf, i7~y~`~;''f,,'.~ ~',!,,~-~.r ~ , ,
~ , ~ . . , ' y'~ ".!~'~f~ '~yK ,a~~~;~" fa;~~4~~~{~I '`tt~~~,;,~ s~~ ~.~ni',.Fi~~.'ati~::~''~1 it"'" ~ i
- ,f':,ln . h~ l, '~~~`~;F7X~h~~ ~.,`~:Ffi ~r3~'; ~"'~'1,,, ~ +
'Y'y~i~` . . ;a~ ~N~~;7~ 'f, ,Y~~''CL ~eit,,, r{ ,~'^'~t 1. ~ ~ 'c. ; ..~hr,'
~ . . , ~~w, , i~ i-
. • - , , ' , , ~ • .
,
.
~ ,
_ ' ' ~ , ~ . • '
• ' ~ . ~ 1
~ ~ • >
• ~ .
. ~
V~
, ~ ,
. ~
' ,
, ' .
~ .ti
r
~1.' .
,
, . I~
1~'~. ~ ,
~r ~ ~ . • .
y
~
0~ .
~ .
_ . ~ ~ .
~ ~ . - . ~ .
. . . ~ . ; „ ~ . .
.
. ~
, '
m
f l j F i s,.. ~,.aM
^,.,~.w,
...w r
\ ! E ~?~i ~ . , . ~ , ~ ,.J ..`..r~ : f i P ~ • A
'4" ~ : d.°"""y'" c r ; : ` ' : 1 I
«4-4-4.,~f ~~•.,,~~6^^-~ F ° i ~ ~ _ F i'.,.'y.f°.,,~.."4"'~ ~ m
F ~ ; ,....w.E,. i1 ,y, .«i .,..-,.,~...~y.~,. s e ~ S ,r`..~.~~~++~..+~. ^ Y
.~.M
i ~l i ~ .eu ~ f ~ { ~ ~ s { s " N
~ 'n
y~~ , F ~ W { ll,~ j ~ ~ ` .w..,.yN.~~, F . ~s i •r- . I
Y
~ s ° { E ,,,s, ..:.,~i t' ~ ~..F.,d.~.,.~-, : o i~ M~Wr I i ip~.~,y~. ' { G,..~~.• ~ ~ n 13
n
.w~{ E ~ i { . ~ ~,.~~~.,.s,.~,,,,,.. i ~ ....~w.~,.,~?y.,..~.'~+s,W` 1 i ~ ~ j ,P,.E«.~.,,,~~ ~ ~ ~w.w,w~ f ~ r-^i ~~F• i-~~ ^ ~ ~1
,n
YI
~ ~ ,..~..q...~......~ .
S ~ 3 ~ q~~ LL! i ~r F f~ • E~~ e: t~t t~ 4~€'V,,,e,,.,~ ° E E f %~f.,^,~ ~Er 2 i: E i[~~a ('1,
; ~ ' ~ o . . w^^.,~.$^-6~w~~ 1 ~ t w v
~ t i . ~ E ~ _ ~ -a ,...E ~•E....,,~,y....~ t ~ ~ i ; ~'E""f"^`i""";'"'~'"'';~'"""""~'"° ( 's ~ ~ 5 Y'y ' e € i 4 ~w~~ ~ r
s i i F~~,~„_ ~ °p....c+..¢. g -r , ~ E i~~s-e ~ l
~Q N J
` ~J ~ N N
~,,,~...M.... 1' ~ C ~
,.y... S.
Q Q fA 0 ~
z _ ; , f 1 i i I 3 ~ l~~x
? 1 ~ E ! ~ ` ~ ~ ~ D ~
1..~.......~,..~~.,i z N tll
N N
T'` _~i
s...,
13
...v.cwr i ~ ~ 1 ~ ~ ~l~'~- . ' ~y .~~y~.,~ ~ ; ~ ~ ,..~p.,..-3.•~• J,."°^.,~x" v,!' t' ~ _ Q)
a) ~ I
.~...yx , ~ , .....~..~,....~w~„«~ ~ Q~ ~
'y^ !
W.~~ _ , I
` ` ` ; . i ~ m"'4"~ -'k"" "~.'"wl t""'+ ~ ~°'"~Z" I ' f 4 ! ~ ~ ! ` ~
{ ,~.,~„.,.N«~~-~• . , E . N
4.~[~ti,....
T f,~,~„., y,~ E~ f_; ~~..«-4~.` P i ~ E ~ S i f' ' ~ z-~-• ~
w 2
F m
~ fM ' E ;-~,r a f...r ~ ~...{.,~w• c
I~I RI
' ~
• E i e c 1 ~ -
! E s f/ ~ I I~ ~;,,,w.~„„ . f . . -.My- '-.v,...w.v . ~'~yy'^5~+` K . ? ~ c'" ~
,,.a,..,~i ~ ( i •,,~,c~, ~~~wi E ~ f~ i ~ ! ~ 1 3 ~ ~ # ~ ~~,,,k .`....~,.c••~•~~~F J € ~°~^¢W"~" ',~v~~° ~ -k~: Y,.,.,rw ~ ~
t r . , {
f , ~ ! 3 ~ I f ~ i o i ~ ~ a ' ~ s ' ` ~ ~ < ~ # : : ~ ~ { t } ' ' ~ s~ «,r vi
..~.~r~,.~ # ~^~•:^!°~~~j~~w`~ ` _ i. ~ ~I^' 1 ~ i f . ~z1 ~ ~ ,4{. t ~ `t'"}` ~ t . . i ( ~ ~ ~ i~~~:
~ ~ I~i E
, ~ w.,w 11.,,^*^ ~ fS i d"'^.
3 ~ ~
{ ¢
•"Y"'$
~ ~ ~ r ..r...
~
~11 ~t~w..,.~.._,..~,.'~..~,~ ~ ~ ~..,z~..... ` i t L• ~
I { s a ~ .w ; ~ i : 1 ~ i I ~ ! ! l~. , f ~~E~ ~ < I ~ E ~ ~
~ E i ~ ~ E~}Y ~ ~ ~ T" ! ? ' • ~~...yiy,.., [ u.. ~ ~ I -4 i ~ w i j~'}"' ~
' 'w+w '
''~»4
[ [ + ✓
~I
` F...~w
~»y+ l .
: .,C«
~ j :
V~.4
T ~
~ -f..-c
„W«„ F E E E ~+p . ,.,i ..,~.,;.....,,-,..~w.~~ f "",""'Y"'."'` ~ . ;~~wF...~~.•_~...>,.,.;,..~; ~ I £ •~.•..+-v.ww F ~ e"'s' i~" O
~ , ~ ~ 4 ~~.~....~~f `,..~i k~ E ..~.,w.~......, { E~F,.r...:.,.~ # 3 ....tp.,~.~_.wi i ~a•w~.,§,...6;~~i i ~,,,,,s' i f f 4.~, ~
~
~w~....
P ~
~'4-~ ~~[..f~....uv,
'
«.i ? f ~-€'-«i ! ~ ~ i^'/N'r . i i i ~,~tx„'....`_-•I ~ ` Y+
~ w.~.... .wy,~. ~ . [ t ~ .•M,•.,.,wi..«.. ~..,...-.q... .~.«..g~.~A _ . i ~.~,w..... ' Xt.•q.
i 1O ,--~~D ' t i I~.~. E f ; i i P~~~ ~ l ~ I r Yl f~
.,.~.€,m.~.,N,E,. ,;•",.,..~v . E ~ '~.'..,..,i...~y..«(....~.w, ~....~..-.+~'..~,."~'.°F-' S ' i...^y° ~..q.,..~..y ~ .~..~Iw,.r.~.~E~., ~ J ~
.~..;:~p~^~g J.,. . • K q ~ ~ , . ~,..f. ~ ~.W.
f i ( ~~~~..,~,w ~.~,..!y^"a w~^r,^ •v~-~w^+r,wt.vy f .~w§~•ry:ww~ r,
w„w-....r .~»~4~§• p i E ~ ~
,~...w•'y'„",•,.
iNWi~k ~ .....~v...~ { ~ t ' z «a.~~..q... • tiu.vwv
4° i { { s ' i 4!~}~ I{ E ( E F s lf; ~ Z
~
,
z E ' ~ F~ s r R I ~ , ' ~ , ; : ; ~ , ~ ~ ~ Z <
~ T
~ ~ ! f
~ ~ 1•I
~ . ? ~i ~ . 4. 5.,. s . ,~.,a i ~ . . + { M b,,.,.I. .,.a~f ,f~ A O
~ F~' ~~~Y•~ .ai ~`~'I~'~,~ . , ' `y''~ _ ~ ~~~.x~~'` / •4'4 I ~ .~.ti~'~,~L~C~~
J~ ~Y ,A p
a~~ ~ . ~.;..;•~5 1~y ' ".~~+~.+~-~.r ~ ~'~n~k Y,' t,~N. ~ . ~ ~ _
{,4 I
}`4 S~ / ~ Y3' `~.k "s.' ri b''•,ry i ?y,~"''f~? ~r~ f ' ,
a~? •,Y ~n~. ~4
~ 1~, ; r~;,~.~,,~ t,r . ~ ~ ' . • . .
j ~ 'k1 ..,t,~~~N~,y~3,.~ 4.
' ~ '4 ~~qp~~~y h~+i~"~,+;tiyr ~ ~,~i~, i '~..s~tF'Jr • . .
1~'"r ~ ~'!~y~'iL t', • r , ` , a'~;~ at'~ k~t~:'~f` ^I;i . ~i. _ ' . .
'T~ 1'~ ~ y~`~~"«~ i"Y"~d •~f.~~!7;• j ~ , , ~~r r; ~ .t~ ~,~j M.i^i' ri ~ '
"+_,~y . .i,► A' f ~~ip~?~, ; ; ~~6.w.~, ~i~t~qt` ~ P'~ _ . ~v~, , y4'1{"~'ar,~r~:•~=;~,~,` ,.f ,V i ~ i, , e ~ U~
~~,,'S}~~:'~~; !.5 a,r~. ~t~'; ~i1~~•~,~sy ~,~;~yi'^~ ar~~• .ti`~ - ~ ' , +
~y'k y JirY ~ j~~ i ~ _ YY, Z~e ~,~af~4~ •1 _ a 1 Tn
n4* c
rA:R T}r .yyq'~:sfd{~~m" , i
' ' y , , ~ ~ ~ i • ~ ~ h i 1'„~ i t ~ .
~f -•Y ,
~ - . ..r. \f~ A4x,I, ~'~,1. . , ~ , r ' •
~ ~ I'l 4"d~^~:Y' . ~ ` ~ • ~ Y , ' '
• ~.y, 'y"~ ^,'r ~ ~ ' . , , . ,
. . ~ . .
, ' ~•~~~a~.~ , ~
• , . rn,
~ ~ _ • ' , : ~ • ~
p•~• • „ ~ • • ti:~~~~~~'~ , ; . ~
; ~t } ' ~r `r.~~.`~ ~ ~ . I~. '1. • I A
y
' ~ •N~ 't~a~q'~ '1 ~r~t~. YF,~~'~ r: V.~.'~„' > 1~"' ~ , ~ :~f ~`~,t., 'haw t~'a~ ~r f~ . Y .
, ~ , ~y~~' ~ r ~ , ",a ? • ~y'- . .
,jt"•./.µ.d`"~`1,T~'~'^'~l~,k'y•'~L?: •r J` ,t,
, • : ~ ~ ~y'i7,~a. Yh.; . ` F~.
. ' h ~ . ~ y ~ . ~ ' f S ~ A~f ~,a ,~I~. ~~{~'9~ ' S1„' , 1 , _
~ • . - . • k ~r~~, ~ 4; ~ ~
, - ~ L~~~ ~ ~ i p~r.,, • nX ' J ~}I A 'i. ' , .
. • , ~ ` y . ~Iiw.~i `.U~ ~t,'f~~~~i , , ,
_ ♦it'-' , 1~.. i . 1~ I, 3`' „ y ( ~p~ ~ ~ '
' ` •'ti~f,'y~~y,'-''•'~~t~:•"1 .i"t~~, ...,y+'~~,v'~ ~r:
141 :''c' • •
~ • ' ~ 1 { ~'M .,f ';r.4~i,im n:. ' .
~.ie ~ ' ~ , ' ~~o ~ ` ' 'r R` • ( ~ ~ ~ . h+ ' y ~ ~ ' ~ ,
-~F ~ ~ • ~ - ~ . ~ r ~ i ~ .
r , ' ` ' 1 .i ~ ~ . • f'S vn, 'ti; ~
-'tG,tv.:t~.~f
h,u ~i`