Loading...
27652 DRAINAGE REPORT ' r i DRAINAGE REPORT for Shelley Lake - 4t" Addition Spokane County, Washington Updated April, 2004 . CLC #S020134 Prepared by: CLC Associates, Inc. ' 707 W. 7th Avenue, Suite 200 Spokane, WA 99204 ' (509)458-6840 This report has been prepared by the ssociates, Inc. under the direction of , the undersigned professional engin v~ d signature appear hereon. ~ ~o~ wAS C1S'i~ w ~•14- OS ' , *Mark L.~Krigbaum, P.E ~'.a ' DRAINAGE REPORT FOR SHELLEY LAKE - 4th ADDITION I PURPOSE Shelley Lake 4th Addition is part of the Shelley Lake PUD Preliminary Plat and is adjacent to Shelley Lake 2"d and 3`d Additions. The purpose of this report is to determine the extent of storm drainage facilities which will be required to dispose of the increase in stormwater runoff created by the development of Shelley Lake 4th Addition. The storm drainage facilities for this project will be designed to dispose of runoff from ten and fifty year design storms. This development is within the Aquifer Sensitive Area of Spokane County and is subject to `208' requirements. For this project the 10 and 50 year curves from the Spokane, Medical Lake, Reardon, Cheney and Rockford intensity ' curves were used, as well as the SCS iso-pluvial rainfall curves. ANALYSIS METHODOLOGY The Rational Method, which is recommended for basins less than ten acres in size, was used to determine the peak discharges and runoff volumes for all basins included in this report. PROJECT DESCRIPTION Shelley Lake 4th Addition includes 39 lots of the 262 lots and 459 units in the approved preliminary ~ plat and FEIS documents. The Shelley Lake subdivision is located in the NE 1/4 of the SE 1/4 of Section 24, T. 25 N., R. 44 E., W.M. within Spokane County, Washington. TOPOGRAPHY The general slopes within this plat varyfrom nearly flat within several natural'saddles to short slopes of up to 25-percent. Generally, the area covered by this report would be characterized as rolling. For development purposes, the natural sloping was used for design and is maintained as much as possible throughout the project. I SOILS As can be seen from the accompanying soils map from the Spokane County Soils Survey as ' performed by the United States Department of Agriculture (USDA) Soil Conservation Services (SCS), the site consists of soils type GmB. These soils are described as follows: , GmB - Garrison very gravelly loam, 0 to 8 percent slopes: Soils within this soil type formed in gravelly glacial outwash material from a variety of igneous rock. These soils are described as somewhat excessively drained. Surface runoff is slow and the hazard of erosion is slight. Spokane ~ County Guidelines for Stormwater Manaqement indicate this to be a Soil Group Type B and per- approved for drywell installation. CLC Associates, Inc. 1 Shelley Lake 4~h Addition DRAINAGE NARRATIVE The offsite drainage which flows into Shelley Lake 4"' Addition has been incorporated into the basins included in this drainage report. As Shelley Lake 4`h Addition is located within the Aquifer Sensitive Area of Spokane County, all onsite street and portions of future areas will be collected and treated using the '208' runoff method as described in the Spokane County Guidelines for Stormwater Manaqement. To facilitate this analysis Shelley Lake 4thAddition was divided into five basins (A, B, C1,C2 and D) as shown in the Basin Map. Basin C1 and C2 have been divided into sub-basins (C1A and C2A) to accurately calculate runoff being conveyed to inlets. Table 1 lists the basin ' details. Basins A, B, C, and D were analyzed using developed conditions. ~Basins B,C, & D include some future development. The future developments that are included are as follows: Basin B: includes the extended portion of Camine Lane. Basin C2: includes 2 future lots and a future portion of Shelly Lake Lane. Basin D: includes the back half of 8 future houses and a future portion of Shelly Lake Lane. Table 1- Pond and Basin Summary _ Z , ± .:-5~..- : vo~.. " ~~-..Ze`~r:- i~r,°, -4 e ~.4'.*.i Pond Bas,i.n' ~T~ota~I.~Ar~,ea7"Y'"h .~~x2,.08. Impervious 7,F~I~"C_ - ` _ . * - _ . - , _ - - - - ' • . ' ` ~ . . w_ _ ' _ -.r' ';3t'1;' , A A 58,613/1.35 21,574/0.50 0.43 12,574 ' B B 155,712/3.57 26,156/0.60 0.28 15,356 C C 246,398/5.66 103,083/2.37 0.46 58,083 (c l +cz) D D 290,450/6.67 43,214/0.99 0.26 23,414 1 ' Total Impervious Area includes Paved roadwaY area, 1800 s.f. Per roof and 750 s.f. Per drivewaY.'208' ImPervious Area includes only the paved roadway area and 750 s.f. per driveway. 1 "208" Ca/cu/ations Within each basin, the street areas from back of curb to back of curb were calculated to determine ' the required '208' storage. As shown on the `208' calculation worksheets included, the `208' storage volumes provided are adequate to perform the `208' treatment for the first half inch of rainfall. In addition to `208' treatment, the enclosed worksheets also show the calculations for the drywell requirements. The `208' storage requirements for each basin are summarized on the following Table 2. CLC Associates, Inc. 2 Shelley Lake 4t" Addition ' Table 2-`208' Treatmenf and Drywell Requirement Summary 4i i' i "4 FXt-~.±~ i: r•,t,S~'a ~ ~a~ ~ 1'r►e_a~L~m.e.nt aD ~r .r,~~?"~;~~,,+,:,_r ~ i ti,~~,e ' ` ! 1'j+HC Y ~ Pond Mi Re u~ire,d ~F Re utrecl~ = SF P~.r~ovided- ~,~F Provided (~,-S~) . . . A A 524 782 536A 800 B B 640 956 723A 1078 C C 2,420 4,840 2,4258 4850 (cI+ c2) D D 976 1,457 2,511 A 3749 ~ Based on a '208'storage depth of 8 inches. Side slope volume is not included. BBased on a'208' storage depth of 6 inches. Side slope volume is not included. Total Stormwater Storage Calculations In addition to the '208' storage requirements, the total stormwater storage for the 10-year and 50- year design storms was also considered for all of the basins. Each of the ponds in Shelley Lake 4tn Addition will have the capacity to contain the required volume for the 50-year design storm. The ponds are only required to handle the 10-year design storm as per Spokane County Guidelines.for Stormwater Manaqement. The bowstring worksheets also show the calculations for the drywell requirements. This information is summarized in the following Table 3. Table 3- 50-year Stormwater Sforage Volume Summary - a s . _ - ' ~ ' : 4a...., k-is:-•r ~ ~ : . . ' fr~~~• : ~ f''{ ~i y A~'t.~ _ i}3` ~ i • ' ' ° a#' 7t.cxv n: : Cil•'F`-i~ . • a ~"M '~,t, '%~'R ~~7 -~i~~ i-' ~c F-"~`~~_' =.:''x--: v'~'v'@`x~:ZCB' i''`T i, ~ .e • ; aF :'-,:r. . +c ~ i+y ~ ,ft ~^.~:~7~~'~S~ ~ ' ~ J►~~,A, y.,r S~r' ' .`~°c~ a . ' r e 1 Pond.~ ~.Basin ~ ``~.~'p ` ~Drywell~-~~:":'Rx j-r -~i~3E''~.~'~ ReqEu'~!'e;d 5(~~F~)~t~~ s :~~Req;u!ire,d~~(~CF)~Y'i~" 'Pr~o~uide.d..~~CF~)`'~ wAY~~: ~,w,.~: A A 457 897 1,070 ° 1-Type B I I g g 660 1,381 1,391 ° 2-Type B ' C C 2,950 6,276 6,479 E pc ~ D D 2,676 4,028 4,142 ° 1-Type B I T me porary gravel perforated pipe with 0.9 cfs outflow was provided for temporary pond. D Volume provided is based on a 1.0-foot depth with 3:1 side slopes. E Volume provided is based on a 1.2 foot depth with 3:1 side slopes. As can be seen in Table 3 all of the ponds will contain the 50-year design storm. CLC Associates, Inc. 3 Shelley Lake 4 Addition Curb Drop/lnlet Analysis ! The curb drops for Pond A are located in a continuous condition, the inlets for Ponds B and D are in sump condition, and Pond C has inlets in both continuous and sump condition. Curb inlet analysis calculations are included in the appendix. Conclusion As demonstrated by the calculations and body of this report the storm drainage facilities provided in this design will adequately remove from the streets, store and dispose of the stormwater from the site for the 10-year design storm as required by Spokane County. Calculation worksheets for the 50- year storm event have been provided to evaluate the performance of the designed drainage facilities. Additionally, the required '208' treatment area is provided for the runoff from the street impervious areas. ' ~ ' CLC Associates, Inc. 4 Shelley Lake 4~' Addition j ~ . . ' . ' ~ y • . . O ~ " AD ~ ~ ~ - , CN tr- 1 ` S t I • . ` • ~ t• ,'-s:r- , ~ - ~ s " '~1 , ' • . ~ ',v., ~.y ,s r tf_ . ~ . H. ~ " • + '''nr'}•' . . ' ^ r 'as"" > ~ _ ` ,~.r-- - ~ ' :yM1 -`~r ' , • 1 t~ f ' ' . • ♦I , • ' 4• ` , • ~ • . ~I ~ ` r _ ~ - t ` SHELLEY LAKE 4TH ADDITION 5020134 Spokane County, Washington 04/27/04 ~ 50-Year Storm Event Engineer: AKF INLET FLOW CAPACITIES in Sump Condirions , , , ,r._ r ' w,^ "Vl ~1 et~ax~~ ~ ~ , ..^N ~ N ~ low D ~ ~ 17M, ,i ~`~b. e. , eysw,~ l .~~i~i~ n, ~a ~.',,''~``.fl~~j~l~"''fikr ~~~6aw:~, 1 t~~ _ K ' f ~ ~.1X•[ lli ' D1 .L P i')....~:, _ ~ ` y~ fV'w'~'J~ ' :'?Ji, t , • . . . , ,lr.. , ~OIlt~ s•[~ - ' Q P ~s~`:,: Q .:~•~:~,~•~r,~;:+~.. 'hQ Q ~ K"." ~ SHELLEY LAKE LANE TYPE 1 (C1-C1A) (1.94+1.11) C-1 STA 23+25.28 LT GRATE 1.94 3.45 3.67 0.50 3.89 -0.84 SHELLEY LAKE LANE TYPE 1 (C2-C2A) (2.97+1,26) C-2 STA 23+25.28 RT GRATE 2.97 4.23 5.91 0.50 6.27 -2.04 Grate Perimeters* Qa - C# P* H^ 1.5 Herringbone = 3.67' Where: C= 3.0, P= Perimeter, H= Flow Depth Vaned = 3.67' WSDOT= 591' * Grate Peruneter = Available Perimeter Divided by a Safety Factor of 2. Maximum Flow Depth is based on curb crest above inlet. Calculated in accordance with Spokane County Guidelines for Stormwater Management, Section 4-1. InletSmp ~ SHELLEY LAKE 4TH ADD. 5020134 Spokane County, Washington l l/l 1/2002 9:07 50-Year Storm Event Engineer; AKF CURB INLET FLOW CAPACITIES in Sump Conditions Curb Inlet Basin Basin + lnlet Maximum Maximum By-Pass Basin Street and lnlet Type Peak Flow By-Pass* Length Flow Depth'* Discharge*** Flow Station (cfs) 0 H Qa Q' Qa LANE A TYPE 2 B STA 12+35.99 LT CURB 2.75 1.86 2.00 0,50 2.18 -0.32 SHELLEY LAKE LANE TYPE 2 D STA 25+40.67 RT CURB 5.00 5.00 5.00 0.50 5.46 -0.46 NOTE; TYPE 1 CURB INLET TYPE 2 CURB INLET Qa = 3.087 "L * H^ 1.5 Curb Inlet Depression = 2 in Curb Inlet Depression = 2 in. Where L= Length of Curb Drop, H= Flow Depth Maximum Inlet Height = 8 in. Curb Inlet Length = 4 ft. Maximum Inlet Height = 6 in. • By-Pass flows from upstream inlets on continuous grades. Maximum Flow Depth is based on Inlet height Calculated per Section 4-1 of the Spokane County Guidelines for Stormwater Management CurbDropS SHELLEY LAKE 4TH ADD. S020134 Spokane County, Washington 01115103 50-Year Design Storm Engineer: AKF CURB INLET CALCULATIONS on Continuous Grade ~ Curb Inlet ~ Basin I Basin Gutter I IRoughnessl I Depth I Discharge) Inlet I By-Pass Pond ~ Street and I Peak Flowl By-Pass I Slope I Cross slope I Coeff. I Z I of Flow I per Lengthl Length I Flow ~ Station ~(cfs) ~ Q ~ S ~ 12 ~ n ~ n ~ d' ~ QalLa" ~ La ~ Q- Qa ~ CARNINE LN ~ ~ I I ~ I ~ I I A ~ STA 13+15.17 LT 2.04 ~ 2.04 0.0087 ~ 0.0220 ( 0.016 ~ 2841 ( 0.200 ~ 0.138 ~ 5 ~ 1.35 ~ CARNINE LN I I I I I I I I I A ~ STA 13+35 LT N 0 ~ 1.35 ~ 0.0087 ~ 0.0220 ~ 0.016 ~ 2841 ~ 0.172 ~ 0.118 ~ 5 ~ 0.76 ~ CARNINE LN ~ ( I I ~ I I I ~ I A ~ STA 13+55 LT ~ 0 ~ 0.76 ( 0.0087 ~ 0.0220 0.016 ~ 2841 ~ 0.138 ~ 0.095 ~ 5 ~ 0.28 ~ LaNE A I I I I I I I I I A ~ CARNINE LN ~ 0 ~ 028 ~ 0.0087 ~ 0,0220 ~ 0,016 ~ 2841 ~ 0.095 ~ 0.066 ~ 5 ~ -0.05 ~ 13+90 NOTE: TYPES 1& 2 CURB INLETS Curb inlet Depression = 2 in. * Calculated per Figure 18 of the Spokane County Guidelines for Stormwater Management - Calculated per Figure 16 of the Spokane County Guidelines for Stormwater Management ~ FLOODED WIDTH CALCULATIONS STREETILOCATION LEFT FLOW WIDTH RIGHT FLOW WIDTH ROAD WIDTH DRY WIDTH MIN DRY WIDTH r (FT) (FT) , (FT) (FT) (FT) CARNINE LANE 8.58 0 30 21.42 12 (BASIN B) CARNINE LANE 7.79 0 30 22.21 12 (BASIN A) , SHELLY LAKE LN. 8.7 9.29 30 12,01 12 (BASIN C) SHELLY LAKE LN. 0 10.46 30 19.54 12 (Basin D) f 1 1 CARNINE LANE (BASIN A) Worksheet for Gutter Section , Project Description Worksheet Gutter Section - Type Gutter Section Solve For Spread Input Data Slope 009400 fUft Discharge 1.47 cfs Gutter Width 1.00 ft Gutter Cross SIoF 020000 fUft Road Cross Slop 020000 fUft Mannings Coeffic 0.013 Results Spread 7.79 tt Flow Area 0.6 fl2 Depth 0.16 ft Gutter Depres: 0.0 in ' Velocity 2.42 fUs r Project Engineer: Doug Desmond uMitled.fm2 CLC 0.ssoclates Inc FlowMaster v6.1 [614k] 11/20/02 10:06:51 AM (D Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 CARNINE LANE (BAS1N B) Worksheet for Gutter Section Project Description Worksheet Gutter Section - Type Gutter Section Soive For Spread Input Data Slope 009400 fUft Discharge 1.90 cfs Gutter Width 1.00 ft Gutter Cross Slo{ 020000 fUft Roed Cross Slop 020000 fUft Mannings Coeffic 0.013 Results Spread 8_58 tt Flow Area 0.7 ft' Depth 0.17 ft Gutter Depres~ 0.0 in Vetociry 2.58 fUs ' Project Engineer: Doug Desmond untitled.im2 CLC Associates Inc FlowMaster v6.1 [614k] 11/20/02 10:07:52 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 SHELLY LAKE LANE (BASIN C1) Worksheet for Gutter Section Project Description Worksheet Gutter Section - Type Gutter Section Solve For Spread Input Data Slope 022000 fbft Discharge 3.01 cfs Gutter Width 1.00 ft Gutter Cross Slo{ 020000 fUft R6ad Cross Slop 020000 fUft Mannings Coeffic 0.013 Results Spread 8.70 ft Flow Area 0.8 ft2 Depth 0.17 ft Gutter Depres: 0.0 in Velocity 3.98 fUs ~ Project Engineer: Doug Desmond untitled.fm2 CLC Assoclates Inc FlowMaster v6.1 [614kJ 11120/02 10:27:49 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 ot 1 SHELLEY LAKE LANE (BASIN C2) Worksheet for Gutter Section Project Description Worksheet Gutter Section - Type Gutter Section Solve For Spread Inpu1 Data Slope 022000 fVft Discharge 3.59 cfs Gutter Width 1.00 ft Gutter Cross Slo{ 020000 ft/ft Road Cross Slop 020000 fUft Mannings Coeffic 0.013 Results Spread 9.29 ft Flow Area 0.9 fl2 Depih 0.19 ft GutterDepres.- 0.0 in Velocity 4.16 fUs Project Engineer: Doug Oesmond untitled.fm2 CLC Associates Inc FlowMaster v6.1 [614k] 11/20/02 10:28:13 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury. CT 06708 USA (203) 755-1666 Page 1 of 1 SHELLEY LAKE LANE (BASIN D) Worksheet for Gutter Section Project Description Worksheet Gutter Section - Type Gutter Section Solve For Spread Input Data Slope 011000 fUft Discharge 3.48 cfs Gutter Width 1.00 ft Gutter Cross Slol 020000 f t/ft Road Cross Slop 020000 fUft Mannings Coeffic 0.013 ResuNs Spread 10.46 ft Flow Area 1.1 ft2 Depth 0.21 ft Gutter Depres: 0.0 in Velocity 3.18 ftls Project Enginesr: Ooug Desmond untitled.fm2 CLC Associates Inc FlowMaster v6.1 [614k] 11/20/02 10:09:05 AM O Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA (203) 755-1666 Page 1 of 1 x. ~ ~ ~ ~ ~ ~ ~ ~ ~ S N I ~ ~ B SHELLEY LAKE 4TH AODITiON Basin Summary Table Raad Irnp. House Area Qriv$l'Walk Total Peak GIA Vof. GIA Vol. Bowstring Wal. Tatal Area Area 1800SF1Lot Area Imp. Area Runoff Flow 1 Req'd Rrov'd Vol. Req'd Provided Number & Type Basin (SF) (Acres) (5F) Hauses (SF) tSF] (SF) Coeff. (cfs) (cu.ft) (cu.ft) (cu,ft) (cuSk} of Urywells A~ 58,613 ~ 1.35 I 8,824 1 5.4 1 9,000 1 3,750 ~ 21,574 1 0.43 ~2,04 ~ 524 f 536 ~ 897 ~ 1670 ~ 1-7ype B B~ 155,712 ~ 3.57 ~ 10,856 ~ 6.0 1 10,800 ~ 4,500 ~ 26,156 ~ 0.28 ~ 2.75 ~ 640 ~ 723 ~ 1381 4 1391 ~ 2-Tyoe B C ~ 246,398 5.66 ~ 39,333 ~25.0 ~ 45,000 ~ 18,750 i 103,083 ~0.46 ~ 975 ~ 2420 ~ 2425 ~ 6276 f E479 C 1 ~ 94,892 2.98 ~ 15,286 ~ 12.0 ~ 21,600 ~ 9,000 ~ 45,$66 ~0.51 ~ 4.34 l ~ ~ ~ ~ C2 ~ 151,506 ` 148 ~ 24,067 ~ 13.0 ~ 23,400 ~ 9,750 ~ 57,217 ~ 0.42 ~ 5.41 ~ ~ ~ ~ ~ - D ~ 290,450 ~ 6.67 ~ 98,164 ~ 11A ~ 19,800 ~ 5,250 ~ 43,214 ~ 0.26 ~ 5,00 ~ 976 ~ 2511 ~ 4028 ~ 4142 ~ 1-TypeB 9VOTE: C=[0,9`(IMPERVIOU5 AREA) + 4,15*(PERVI04J5 AREA)]1TOTAL AREA WHERE C = RUiVOFF COEFF, *VQLUME PROVIDED 1S BASED 0N A 1' DEPTli {51QE SLOPES ARE lNCLl1DED} 5424134 CLC ASSOCIATES, INC, 4127J2004 ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ z~ ~ ~ ~ . 0 ~ . ~ m m m m m m m r ~ ~ ~ m m m ~ ~ ~ m m PEAK FLOW CALCULATION PROJECT: SNELLEY LAKE BOWSTRING METHOD PROJECT: SHELLEY LAKE 10-Year Design Storm DETENTION BASIN DESIGN BAStN: A DESIGNER; AKF BASIN: A DATE; 19-Nav02 Tot. Area 58,613 SF 1,35 Acres Imp, Area 21,574 SF C= 0.90 Time Increment (min) 5 Per. Area 37,039 SF C= 0.15 Time of Conc. (min) 7.86 Wt. C 0,43 Outflow (cfs) 1 Design Year Flow 10 CASE 1 Area (acres) 1.35 Impervious Area (sq ft) 21574 83 ft. Overland Flow 'C' Factor 0.43 Area' C 0.573 . Ct = 0.15 Asphaltic Area 12,574 L = 83 it. ' n= 0.40 Time Time Inc, Intens. Q Devel, Vol.ln Vol.Out 5torage S = 0.0800 (min) (sec) (inlhr) (cfs) (cu ft) (cu ft) (cu ft) 7,86 471 2,56 1.47 928 471 457 Tc = 2.62 min,, by Equation 3-2 of Guidelines 5 300 3,18 1.82 732 300 432 555 ft. Gutter flow 10 600 2.24 1,28 977 600 377 15 900 1.76 1.01 1067 900 167 Z1= 50.0 For Z2 20 1200 1.45 0.83 1133 1200 -67 Z2 = 3.5 Type B=1.0 25 1500 1.23 0.70 1170 1500 -330 n= 0.016 Rolled = 3.5 30 1800 1,05 0.60 1180 1800 -620 S= 0.0092 35 2100 0.91 0.52 1180 . 2100 -920 40 2400 4.81 0.46 1188 2400 -1212 d= 0.1763 ft. Flow Width 8.8 ft, 45 2700 0.74 0,42 1212 2700 -1488 50 3000 0.69 0.39 1248 3000 -1752 55 3300 0,65 0.37 1287 3300 -2013 A R Q Tc Tc total ! Qc 60 3600 0,61 0.35 1324 3600 -2276 0.83 0.09 1.47 5,24 7,86 2.56 1.47 65 3900 0.58 0.34 1361 3900 -2539 10 4200 0.56 4.32 1410 4200 -2790 Qpeak for Case 1= 1.47 cfs 75 4500 0,55 0.32 1481 4500 -3019 80 4800 0.55 0.31 1561 4800 -3239 85 5100 0,53 0.31 1612 5100 -3468 90 5400 0.50 0,29 1585 5400 -3815 CASE 2 95 5700 0.45 0.26 1517 5700 -4183 100 6000 0.49 0.28 1732 6000 -4268 Case 2 assumes a Time of Concentration less than 5 minutes so that the peak flow =.90(Tc=5 intensity)(Imp. Area) = 1.42 cfs "208" TREATMENT REQUIREMENTS Minimum "206" Volume Required 524 cu ft Provided Treatment Volume 536 cu fl So, the Peak flow for the Basin is the greater of the two flows, DRYWELI REQUIREMENTS -10 YEAR DESIGN STORM 1,47 cfs Maximum Storage Required by Bowstring 457 cu ft Provided Storage Volume 1472 cu ft (BASEf Number and Type of Drywells Required 0 Single 1 Double m m m m mm m m m M m m m M'M PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE BOWSTRING METH00 PROJECT: SHELLEY LAKE 10•Year Design Storm DETENTION BASIN DESIGN BASIN: B DESIGNER: AKF BASIN: B DATE: 19-Nov-02 Tot, Area 155,712 SF 3.57 Acres . Imp. Area 26,156 SF C= 0.90 Time increment (min) 5 Per. Area 129,556 SF C= 0,15 Time of Conc. (min) 12•95 Wt. C 0.28 Outflow (cfs) 2 Design Year Flow 10 CASE 1 Area (acres) 3.57 Impervious Area (sq ft) 26156 422 ft. Overland Flow 'C' Factor 0.28 Area " C 0,987 Ct = 0.15 Asphaltic Area 15,356 L = 422 ft. n- 0.40 Time Time Inc. Intens. Q Devel, Vol.ln Vol.Out Storage S = 0.0300 (min) (sec) (inlhr) (cfs) (cu ft) (cu ft) (cu ft) 12.95 777 1,92 1.90 1974 1554 420 , Tc = 9.32 min,, by Equation 3-2 of Guidelines 5 300 3.18 3,13 1260 600 660 414 ft. Gutter flow 10 600 2.24 2.21 1778 1200 578 15 900 1,76 1.73 2016 1800 216 Z1= 50.0 For Z2 20 1200 1.45 1.43 2699 2400 -301 Z2 = 3,5 Type B=1.0 25 1500 1.23 1.21 2139 3000 -861 n= 0,016 Rolled = 3,5 30 1800 1.05 1.04 2138 3600 -1462 S- 0.0094 35 2100 0.91 0.90 2124 4200 -2076 . 40 2400 0.81 0.80 2128 4800 -2672 d= 0.1935 ft. Flow Width 9.7 ft, 45 2700 0.74 0.73 2161 5400 -3239 50 3000 0,69 0.68 2218 6000 -3782 55 3300 0.65 0.64 2281 6600 -4319 A R Q Tc Tc total I Qc 60 3600 0.61 0.61 2341 7200 •4859 1.00 0.10 1.90 3.63 12.95~ 1.92 1.90 65 3900 0.58 0,58 2402 7800 •5398 70 4200 0.56 0,56 2485 8400 •5915 Qpeak for Case 1- 1.90 cfs 75 4500 0.55 0.55 2605 9000 -6395 80 4800 0.55 0.54 2743 9600 -6857 85 5100 0.53 0.53 2828 10200 -7372 90 5400 0.50 0.49 2779 10800 -8021 CASE 2 95 5700 0,45 0.45 2657 11400 -8743 100 6000 0.49 0,48 3031 12000 -8969 Case 2 assumes a Time of Concentration less than 5 minutes so that the peak flow =.90(Tc=5 intensity)(Imp. Area) = 1,72 cfs "208" TREATMENT REQUIREMENTS Minimum "208" Volume Required 640 cu ft Provided Treatment Volume 654 cu ft So, the Peak flow for the Basin is the greater of the two flows, DRYWELL REQUIREMENTS -10 YEAR DESIGN STORM 1.90 cfs Maximum Storage Required by Bowstring 660 cu ft Provided Storage Volume 1195 cu ft (BASEI Number and Type of Drywells Required 0 Single 2 Double r r m m m mm m M-M.m m m m m m m m m PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE BOWSTRING METHOD PROJECT: SHELLEY LAKE 10-Year Design Storm DETENTION BASIN DESIGN BASIN: C DESIGNER: AKF BASIN; C DATE: 27-Apr-04 Tot. Area 246,398 SF 5.66 Acres Imp. Area 103,083 SF C= 0.90 Time Increment (min) 5 Per. Area 143,315 SF C= 0.15 Time of Conc. (min) 5.00 Wt. C 0.46 Outflow (cfs) 0.9 Design Year Flow 10 CASE 1 Area (acres) 5.66 Impervious Area (sq ft) 103083 114 ft, Overland Flow 'C' Factor 0.46 Area ` C 2.623 Ct = 0.15 Asphaftic Area 58,083 L = 114 ft. n= 0.40 Time Time Inc. Intens. Q Devel. Vol.in Voi.Out Storage S = 0.0080 (min) (sec) (inlhr) (cfs) (cu ft) (cu ft) (cu ft) 5.00 300 3.18 6.77 2721 270 2451 Tc = 6.32 min., by Equation 3-2 of Guidelines 5 300 3.18 6.77 2121 270 2451 773 ft. Gutter flow 10 600 2.24 4.77 3351 540 2811 15 900 1.76 3.74 3745 810 2935 Z1 = 50.0 For Z2 20 1200 1.45 3.10 4030 1080 2950 Z2 = 3.5 Type B=1.0 25 1500 1.23 2.62 4193 1350 2843 n= 0.016 Rolled = 3.5 30 1800 1.05 2.24 4253 1620 2633 S= 0.0125 35 2100 0.91 1.94 4272 1890 2382 40 2400 0.81 1.72 4314 2160 2154 d= 0.2744 ft. Flow Width 13.7 ft. 45 2700 0.74 1.57 4411 2430 1981 50 3000 0.69 1.47 4551 2700 1851 55 3300 0.65 1.38 4701 2970 1731 A R Q Tc Tc total I Qc 60 -3600 0.61 1.31 4841 3240 1601 2,01 0.14 5.57 4,66 10.98 2,12 5.57 '65 3900 0.58 1.25 4983 3510 1473 70 4200 0.56 1.20 5170 3780 1390 Qpeak for Case 1= 5.57 cfs 75 4500 0,55 1.18 5433 4050 1383 80 4800 0.55 1.17 5732 4320 1412 85 5100 0.53 1.14 5921 4590 1331 90 5400 0.50 1,06 5628 4860 968 CASE 2 95. 5700 0.45 0.96 5580 5130 450 100 6000 0.49 1.04 6374 5400 974 Case 2 assumes a Time of Concentration less than 5 minutes so that the peak flow =.90(Tc=5 intensity)(Imp, Area) = 6.77 cfs "208" TREATMENT REQUIREMENTS Minimum "206" Volume Required 2,420 cu ft Provided Treatment Volume 2,425 cu ft So, the Peak flow for the Basin is the greater of the two flows, DRYWELL REQUIREMENTS -10 YEAR DESIGN STORM 6,77 cfs Maximum Storage Required by Bowstring 2950 cu ft Provided Storage Volume 6479 cu ft Number and Type of Drywells Required 1 Single 0 Double PEAK FLODU CALCULATION PRO.#EGT: SHELI.EY LA4CE BOUVSTRING MIETHOD PROJECT: SHELLEY LAKE 10-Year 1]esign Starm DETENTION BASfN DESIGN BAS1N: C DESIGN ER: AKF gp,SIN; C DATE; 17-Jun-03 Tat. Area 246,39$ 6F 5.66 ACrBs Imp. Area 103,083 5F C = b,BO Time Increment (min) 5 Per. Area 143,315 SF C= 0.15 Tfine of Conc. (min) 5.00 Wt. C 0,46 Outflow (cfs) 0.9 pesign Year Flow 10 CqSE 1 Area (acres) 5.66 Impen+ious Area (sq ft) 1030$3 114 ft. Overland FlOw 'C' Factor 0.46 Area * C 2.623 Ct = 0.15 Asphaltic Area 58,083 L, = 114 f6~ n- O.qp Time Time Inc. Intens. Q Devel. Vol.ln Va1,0ut Starage S = 0,0480 (min) {sec} (inlhr) (cfs) (cu ft) (cu ft) {cu fk} 5.00 304 3,18 6.77 2721 270 2451 Tc ~ 8.32 m~n,, by Equatian 3-2 of Guidelines 5 300 3.18 6.77 2721 270 2451 773 ft, Gutter flow 10 600 2,24 4.17 3351 540 2811 15 900 4,76 3.14 3745 810 2935 21 = 50.0 Far Z2 70 1200 1,45 110 4030 1080 2954 Z2 = 3.5 Type B=1A 25 1500 4.23 2.62 4193 1354 2843 n= 0.01 6 Rolled = 3,5 30 1800 1.05 2.24 4253 1620 2633 S= 0.0125 35 2100 0.91 1.94 4272 1890 2382 40 2400 0.81 1,72 4314 2180 2154 d= 0.2144 ft. Flaw 1Nitlth 117 fl. 45 2700 0.74 1.57 4411 2430 1981 50 3000 4.69 1,47 4551 2700 1859 55 3300 M5 1.38 4701 2910 1737 A R Q TC Tc tatal I QC 60 3600 0.61 9.31 4541 3240 1601 2,01 0,34 5,57 4,66 10.98 2.12 5.57 65 3900 0.58 1.25 4983 3510 1473 70 4200 0,56 1.20 5174 3780 1390 Qpeak fflr Case 1_ 5.57 cfs 75 4500 0,55 1.18 5433 4050 1383 80 4800 0.55 1,17 5732 4320 1412 85 5100 0.53 1,14 5921 4590 1331 90 5400 0.54 9.06 5828 4860 968 CASE 2 95 5700 0.45 0.96 5580 5130 450 100 6000 0.49 1.44 6374 5404 974 Case 2 assumes a Time of Concentration Iess than 5 minutes sQ Ihal the peak flow =.90(Tc=5 in#enslly)(Imp. Area) = 6.77 cfs "208" TREATMENT REQLfIREMENTS ~ Minimum "20$" Vvlume Required 2,424 cu ft Provideci Treatment Valume '1025 cu ft Sa, #he Peak flow for the Basin is the greaier ot Ihe iwo flows, DRYWELL REQU#REMENTS - 10 YEAR DESIGN STORM 6,77 cfs Maximum Storage Required by Bawstnng ft u Provitletl Starage Volume 4. - cu ft Number and 1'ype 4f Drywells Required 1 Single 0 Double PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE 10-Year Design Storm BASIN: C1 ' Tot. Area 94,892 SF 2.18 Acres Imp. Area 45,866 SF C= 0.90 Per. Area 49,026 SF C= 0.15 Wt. C 0.51 CAS E 1 ti.====___ 79 ft. Overland Flow Ct = 0.15 L = 79 ft. n = 0.40 S = 0.0100 Tc = 4.74 min., by Equation 3-2 of Guidelines 542 ft. Gutter flow Z1 = 50.0 For Z2 Z2= 3.5 TypeB=1.0 n = 0.016 Rolled = 3.5 ' S = 0.0214 d= 0.1930 ft. Flow Width 9.7 ft. A R Q Tc Tc totai I Qc ' 1.00 0.10 2.85 3.16 7.90 2.56 2.85 Qpeak for Case 1= 2.85 cfs CAS E 2 Case 2 assumes a Time of Concentration less than 5 minutes so that the peak flow =.90(Tc=5 intensity)(Imp. Area) = 3.01 cfs So, the Peak flow for the Basin is the greater of the two flows, 3.01 cfs PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE 10-Year Design Storm BAS I N : C2 Tot. Area 151,506 SF 3.48 Acres Imp. Area 57,217 SF C= 0.90 Per. Area 941289 SF C= 0.15 Wt. C 0.43 CAS E 1 114 ft. Overland Flow Ct = 0.15 L = 114 ft. n = 0.40 S = 0.0080 Tc = 6.32 min., by Equation 3-2 of Guidelines 773 ft. Gutter flow Z1 = 50.0 For Z2 Z2= 3.5 TypeB=1.0 n = 0.016 Rolled = 3.5 S = 0.0125 d= 0.2195 ft. Flow W idth 11.0 ft. A R Q Tc Tc total I Qc 1.29 0.11 3.07 5.41 11.73 2.04 3.07 Qpeak for Case 1= 3.07 cfs ' CAS E 2 Case 2 assumes a Time of Concentration less than 5 minutes so that the peak flow =.90(Tc=5 intensity)(Imp. Area) = 3.76 cfs So, the Peak flow for the Basin is the greater of the two flows, 3.76 cfs m m m m m m m ~ m m m m m m m m m m m PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE BOWSTRING METHOD PROJECT: SHELLEY LAKE 10-Year Design Storm DETENTION BASIN DESIGN BASIN: D DESIGNER: AKF BASIN: D DATE: 27-Apr-04 Tot. Area 290,450 SF 6.67 Acres Imp. Area 43,214 SF C= 0.90 Time Increment (min) 5 Per. Area 247,236 SF C= 0.15 Time of Conc. (min) 12.18 Wt. C 0.26 Outflow (cfs) 1 Design Year Flow 10 CASE 1 Area (acres) 6.67 ImpeNious Area (sq ft) 43214 300 ft. Overland Flow 'C' Factor 0.26 Area * C 1.744 Ct = 0.15 Asphaltic Area 23,414 L = 300 ft. n= 0.40 Time Time Inc. Intens. Q Devel. Vol.ln Vol.Out Storage S = 0.0300 (min) (sec) (in/hr) (cfs) (cu ft) (cu ft) (cu ft) 12.18 731 1.99 3.48 3407 731 2676 Tc = 7.59 min., by Equation 3-2 of Guidelines 5 300 3.18 5.54 2228 300 1928 781 ft. Gutter flow 10 600 2.24 3.91 3143 600 2543 15 900 1.76 3.06 3516 900 2616 Z1= 50.0 For Z2 20 1200 1.45 2.54 3672 1200 2472 Z2 = 3.5 Type B=1.0 25 1500 1.23 2.14 3748 1500 2248 n= 0.016 Rolled = 3.5 30 1800 1.05 1.83 3751 1800 1951 S= 0.0183 35 2100 0.91 1.59 3731 2100 1631 40 2400 0.81 1.41 3740 2400 1340 d= 0.2143 ft. Flow Width 10.7 ft. 45 2700 0.74 1.29 3801 2700 1101 50 3000 0.69 1.20 3903 3000 903 55 3300 0.65 1,13 4016 3300 716 A R Q Tc Tc total I Qc 60 3600 0.61 1.07 4121 3600 521 123 0.11 3.48 4,59 12.18 1.99 3.48 65 3900 0.58 1.02 4230 3900 330 70 4200 0.56 0,98 4378 4200 178 Qpeak for Case 1= 3.48 cfs 75 4500 0.55 0,97 4591 4500 91 80 4800 0.55 0.96 4834 4600 34 85 5100 0.53 0,93 4986 5100 -114 90 5400 0.50 0.87 4900 5400 -500 CASE 2 " 95 5700 0.45 0.79 4685 5700 -1015 .100 ' 6000 0.49 0.86 5345 6000 -655 Case 2 assumes a Time of Concentration less than 5 minutes so that the peak flow =.90(Tc=5 intensity)(Imp. Area) = 2.84 cfs "208" TREATMENT REQUIREMENTS Minimum "208" Valume Required 976 cu ft Provided Treatment Volume 2,511 cu ft So, the Peak flow for the Basin is the greater of the two flows, DRYWELL REQUIREMENTS -10 YEAR DESIGN STORM 3.48 cfs Maximum Storage Required by Bowstring 2676 cu ft Provided Storage Volume 4142 cu ft Number and Type of Drywells Required 0 Single 1 Double m m m m m m m m m m m m m m m m m m m PEAK FLOW CALCULATION PROJECT: SHELLY LAKE 4TH BOWSTRING METHOD PROJECT; SHELLY LAKE 4TH 50-Year Design Storm DETENTION BASIN DESIGN BASIN: A ~ DESIGNER AKF BASIN: A DATE: 27-Apr-04 Tot. Area 58,613 SF 1,35 Acres Time Increment (min) 5 Imp. Area 21,574 SF C= 0.9 Time of Conc. (min) 10.17 Perv. Area 37,039 SF C= 0.15 Outflow (cfs) 1 Wt. C= 0.43 Design Year Flow 50 Area (acres) 1.35 CASE 1 Imperoious Area (sq ft) 21574 'C Factor 0.43 83 ft. Overland Flow Area' C 0.579 Treatment Area 12,574 Ct = 0.15 L= 83 ft. Time Time Inc. Intens. Q Devel. Vol.ln Vol.Out Storage n= 0.40 Imin1 (sec) Iinlhr) (cfs) (cu ft) (cu ft) (cu ft) S= 0.0080 10.17 610 3.17 1.84 1507 610 897 Tc = 5.22 min., by Equation 3-2 of Guidelines 5 300 4.58 2.65 1065 300 765 10 600 321 1.86 1492 600 892 555 ft. Gutter flow 15 900 2.44 1.41 1564 900 664 20 1200 1.98 1.15 1613 1200 413 Z1 = 50.0 For Z2 25 1500 1.68 0.97 1656 1500 156 Z2 = 3.5 Type B=1.0 30 1800 1.46 0.84 1695 1800 -105 n= 0,016 Rolled = 3.5 .35 2100 1.30 0,75 1734 2100 -366 S= 0.0092 40 2400 1.18 0.68 1776 2400 -624 45 2700 1.08 0.63 1823 2704 -877 d= 0.1920 ft. Flow Width 9.6 ft. 50 3000 1.01 0.58 1869 3000 -1131 55 33000.94 0.54 1909 3300 -1391 60 3600 0.88 0.51 1942 3600 -1658 A R Q Tc Tc total I Qc 65 3900 0.83 0.46 1977 3900 -1923 0.99 0.10 1.84 4.95 10.17 3.17 1.84 70 4200 0.79 0.46 2026 4200 -2174 75 4500 0,77 0.45 2098 4500 -2402 Qpeak for Case 1= 1.84 cfs 80 , 4800 0,75 0.44 2184 4800 -2616 85 . 5100 0,73 0.42 2254 5100 -2846 ' 90 -5400 0.70 0.40 2267 5400 -3133 95 5700 0,66 0.38 2247 5700 -3453 CASE 2 100 6000 0.68 0.39 2443 6000 -3557 Case 2 assumes a Time of ConcentraGon less than 5 minutes so lhat the "208" TREATMENT REQUIREMENTS peak flow =.90(Tc=5 intensity)(Imp. Area) = 2.04 cfs Minimum "208" Volume Required 524 cu ft Provided Treatment Volume 536 cu ft DRYWELL REQUIREMENTS - 50 YEAR DESIGN STORM So, the Peak flow for the Basin is the greater of the two flows, Maximum Storage Required by Bowstring 897 cu ft 2.04 cfs Provided Storage Volume 1010 cu ft Number and Type of Drywells Required 0 Single 1 Double r ~ m m m m m m m m i m ~ ~ m m m m r PEAK FLOW CALCULATION PROJECT: SHELLY LAKE 4TH BOWSTRING METHOD PROJECT: SHELLY LAKE 4TH 50•Year Design Storm DETENTION BASIN DESIGN BASIN: B 3 DESIGNER DNR BASIN: B DATE; 27-Apr-04 Tot. Area 155,712 SF 3.57 Acres Time Increment (min) 5 Imp. Area 26,156 SF C= 0,9 Time of Conc. (min) 12.63 Perv. Area 129,556 SF C= 0,10 Outflow (cfs) , 2 Wt. C= 0.28 Design Year Flow 50 Area (acres) 3.57 CASE 1 Impervious Area (sq ft) 26156 'C Factor 0.28 422 ft. Overland Flow Area' C • 1.001 Treatment Area 15,356 Ct= 0.15 L= 422 ft. Time Time Inc. Intens. Q Devel. Vol.ln Vol.Out Storage n = 0.40 (min) (sec) (iNhr) (cfs) (cu ft) (cu R) (cu ft) S= 0.0300 12.63 758 2.75 2.75 2797 1516 1282 Tc = 9.32 min., by Equation 3-2 of Guidelines 5 300 4.58 4.58 1842 600 1242 10 600 3.21 3.21 2581 1200 1381 414 ft. Gutter flow 15 900 2.44 2.44 2829 1800 1029 20 1200 1.98 1.98 2890 2400 490 Z1= 50.0 For Z2 25 1500 1.68 1.68 2949 3000 -51 Z2 = 3.5 Type B=1.0 30 1800 1.46 1.46 3005 3600 -595 n= 0.016 Rolled = 3.5 35 2100 1.30 1.30 3064 4200 -1136 , S= 0.0094 40 2400 1.18 1.18 3132 4800 -1668 45 2700 1.08 1.08 3208 5400 -2192 d= 02223 ft. Flow Width 11.1 ft. 50 3000 1.01 1.01 3284 6000 -2716 55 3300 0.94 0.94 3349 6600 -3251 60 3600 ' 0.88 0.88 3404 7200 -3796 A R Q Tc Tc total I Qc 65 3900 0.83 0.83 3462 7800 -4338 1.32 0.11 2.75 3.31 12,63 2.75 2,75 70 4200 0.79 0.60 3544 8400 -4856 75 4500 0.77 0.77 3667 9000 -5333 Qpeak for Case 1= 2.75 cfs 80 4800 0.75 0.75 3817 9600 -5783 85 5100 0,73 0.73 3936 10200 -6264 90 5400 0.70 0.70 3955 10800 -6844 95 5700 0,66 0.66 3921 11400 -7479 CASE 2 100 6000 0.68 0.68 4260 12000 -7740 Case 2 assumes a Time of Concentration less than 5 minutes so that the "208" TREATMENT REQUIREMENTS peak flow =,90(Tc=5 intensity)(Imp. Area) = 2.47 cfs Minimum "208" Volume Required 640 cu ft Provided Treatment Volume 723 cu ft DRYWELL REQUIREMENTS - 50 YEAR DESIGN STORM So, the Peak flow for the Basin is the greater of the two flows, Maximum Storage Required by Bowstring 1381 cu ft 2.75 cfs Provided Storage Volume 1391 cu ft Number and Type of Drywells Required 0 Single 2 Double ~ m m m m m m m m m m m m m m m m m m PEAK FLOW CALCULATION PROJECT: SHELLY LAKE 4TN BOWSTRING METHOD PROJECT: SHELLY LAKE 4TH 50-Year Design Storm DETENTION BASIN DESIGN BASIN; C ~ DESIGNER AKF BASIN: C DATE: 27-Apr-04 Tot. Area 246,398 SF 5.66 Acres Time Increment (min) 5 Imp. Area 103,083 SF C= 0.9 Time of Conc. (min) 10.57 Perv. Area 143,315 SF C= 0.10 Outflow (cfs) . 0.9 Wt, C= 0.46 Design Year Flow 54 Area (acres) 5.66 CASE 1 Impervious Area (sq ft) 103083 'C' Factor 0.46 114 ft, Overiand Fiow Area' C 2.602 Treatment Area 58,083 Ct= 0.15 L= 114 ft. Time Time Inc. Intens. Q Devel. Vol.ln Vol.Out Storage n= 0.40 (min) (sec) (inlhr) (cfs) (cu ft) (cu ft) (cu ft) S= 0.0080 10.57 634 3.10 8.06 6846 571 6275 Tc = 6.32 min., by Equation 3-2 of Guidelines 5 300 4.58 11.91 4789 270 4519 10 600 321 6.34 6709 540 6169 773 ft. Gutter flow 15 900 2.44 6.35 7086 810 6276 20 1200 1.98 5.15 7296 1080 6216 Z1 = 50.0 ForZ2 25 1500 1.68 4.36 7483 1350 6133 Z2 = 3.5 Type B=1.0 30 1800 1.46 3.80 7653 1620 6033 n= 0,416 Rolled = 3.5 35 2100 1.30 3.38 7824 1890 5934 S= 0.0125 40 2400 1.18 3.06 8014 2160 5854 45 2700 1.08 2.82 8221 2430 5791 d= 0.3152 ft. Flow Width 15.8 ft, 50 3000 1.01 2.62 8426 2700 5726 , 55 3300 0.94 2.45 8604 2970 5634 60 3600 0.88 2.29 8753 3240 5513 A R Q Tc Tc total I Qc 65 3900 0.83 2.16 8908 3510 5398 2.66 0.16 8.06 4,25 10.57 3.10 8.06 70 4200 0.79 2.07 9127 3780 5347 75 4500 0.77 2.00 9449 4050 5399 Qpeak for Case 1= 8,06 cfs 80 4800 0.75 1.96 9839 4320 5519 85 5100 0.73 1.91 10151 4590 5561 90 5400. 0.70 1.82 10209 4860 5349 95 5700 0.66 1.71 10120 5130 4990 CASE 2 100 6000 0.68 1.77 10999 5400 .5599 Case 2 assumes a Time of Concentration less than 5 minutes so that the "208" TREATMENT REQUIREMENTS peak flow =.90(Tc=5 intensity)(1mp. Area) = 9.75 cfs Minimum "208" Volume Required 2,420 cu ft Provided Treatment Volume 2,425 cu ft DRYWELL REQUIREMENTS - 50 YEAR DESIGN STORM So, the Peak flow for the Basin is the greater of the lwo flows, Maximum Storage Required by Bowstring 6276 cu ft 9.75 cFs Provided Storage Volume 6479 cu ft Number and Type of Drywells Required 1 Single 0 Double 50-Year Design Storm ' BASIN: C1 ' Tot. Area 94,892 SF 2.18 Acres Imp. Area 45,866 SF C= 0.9 ' Perv. Area 49,026 SF C= 0.15 Wt. C - 0.51 CASE 1 79 ft. Overland Flow Ct = 0.15 L = 79 ft. n = 0.40 S= 0.0100 Tc = 4.74 min., by Equation 3-2 of Guidelines 542 ft. Gutter flow Z1 = 50.0 For Z2 Z2= 3.5 TypeB=1.0 n = 0.016 Rolled = 3.5 , , S = 0.0214 d= 0.2232 ft. Flow Width 11.2 ft. A R Q Tc Tc total I Qc , 1.33 0.11 4.20 2.87 7.61 3.76 4.20 Qpeak for Case 1= 4.20 cfs ' CASE 2 Case 2 assumes a Time of Concentration less than 5 minutes so that the peak flow =.90(Tc=5 intensity)(Imp. Area) = 4.34 cfs So, the Peak flow for the Basin is the greater of the finro flows, 4.34 cfs PEAK FLOW CALCULATION PROJECT: SHELLY LAKE 4TH 50-Year Design Storm BAS I N : C2 Tot. Area 151,506 SF 3.48 Acres Imp. Area 57,217 SF C= 0.9 Perv. Area 94,289 SF C= 0.15 Wt. C = 0.43 CAS E 1 114 ft. Overland Flow Ct = 0.15 L = 114 ft. n = 0.40 S= 0.0080 Tc = 6.32 min., by Equation 3-2 of Guidelines 773 ft. Gutter flow Z1 = 50.0 For Z2 Z2 = 3.5 Type B= 1.0 n = 0.016 Rolled = 3.5 S = 0.0125 d= 0.2530 ft. Flow Width 12.7 ft. A R Q Tc Tc total I Qc ' 1.71 0.13 4.48 4.92 11.24 2.98 4.48 ' Qpeak for Case 1= 4.48 cfs CAS E 2 Case 2 assumes a Time of Concentration less than 5 minutes so that the peak flow =.90(Tc=5 intensity)(Imp. Area) = 5.41 cfs So, the Peak flow for the Basin-is the greater of the two flows, 5.41 cfs PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE 50-Year Design Storm BASIN: C1A Tot. Area 49,135 SF 1.13 Acres Imp. Area 251375 SF C= 0.9 Perv. Area 23,760 SF C= 0.15 Wt. C = 0.54 CASE 1 78 ft. Overland Flow Ct = 0.15 L = 78 ft. n = 0.40 S= 0.0100 Tc = 4.71 min., by Equation 3-2 of Guidelines 523 ft. Gutter flow Z1 = 50.0 For Z2 Z2= 3.5 TypeB=1.0 n = 0.016 Rolled = 3.5 S = 0.0214 d= 0.1760 ft. Flow Width 8.8 ft. A R Q Tc Tc total I Qc 0.83 0.09 2.23 3.24 7.95 3.67 2.23 Qpeak for Case 1= 2.23 cfs CAS E 2 Case 2 assumes a Time of Concentration less than 5 minutes so that the peak flow =.90(Tc=5 intensity)(Imp. Area) = 2.40 cfs So, the Peak flow for the Basin is the greater of the finro flows, 2.40 cfs PEAK FLOW CALCULATION PROJECT: SHELLEY LAKE 50-Year Design Storm BAS I N : C2A Tot. Area 65,401 SF 1.50 Acres Imp. Area 24,612 SF C= 0.9 Perv. Area 401789 SF C= 0.15 Wt. C = 0.43 CAS E 1 131 ft. Overland Flow Ct = 0.15 L = 131 ft. n = 0.40 S= 0.0200 Tc = 5.22 min., by Equation 3-2 of Guidelines 402 ft. Gutter flow Z1 = 50.0 For Z2 Z2 = 3.5 Type B= 1.0 n = 0.016 Rolled = 3.5 ' S = 0.0220 d= 0.1810 ft. Flow W idth 9.1 ft. A R Q Tc Tc total I Qc ' 0.88 0.09 2.44 2.41 7.63 3.76 2.44 ' Qpeak for Case 1= 2.44 cfs CAS E 2 Case 2 assumes a Time of Concentration less than 5 minutes so that the peak flow =.90(Tc=5 intensity)(Imp. Area) = 2.33 cfs So, the Peak flow for the Basin is the greater of the finro flows, 2.44 cfs m m r m m m r r m r r~ m m m m m m m r PEAK FLOW CALCULATION PROJECT; SHELLY LAKE 4TH BOWSTRING METHOD PROJECT: SHELLY LAKE 4TH 50-Year Design Storm DETENTION BASIN DESIGN BASIN: D F DESIGNER DNR BASIN: D DATE: 27-Apr-04 Tot. Area 290,450 SF 6.67 Acres Time Increment (min) 5 Imp. Area 43,214 SF C= 0.9 Time of Conc. (min) 11.79 Perv, Area 241,236 SF C= 0.10 Outflow (cfs) 1 Wt. C= 0.26 Design Year Flow 50 Area (acres) 6.67 CASE 1 Imperoious Area {sq ft} 43214 'C' Factor 0.26 300 ft. Overland Flow Area' C 1.734 Treatment Area, ' 23,414 Ct = 0.15 ' L= 300 ft. Time 'Time Inc: Intens. Q Devel. Vol.ln Vol.Out Storage n= 0,40 (min) (sec) (in/hr) (cfs) (cu ft) (cu ft) (cu ft) S= 0.0300 11.79 707 2.88 5.00 4735 707 4028 Tc = 7.59 min., by Equation 3-2 of Guitlelines 5 300 4.58 7,94 3191 300 2891 10 600 321 5,56 4470 600 3870 781 ft. Gutter flow 15 900 2,44 4.23 4827 900 3927 20 1200 1.98 3.43 4946 1200 3746 Z1 = 50.0 For Z2 25 1500 1.68 2,91 5058 1500 3558 Z2 = 3.5 Type B=1.0 30 1800 1.46 2.53 5162 1800 3362 n= 0.016 Rolled = 3.5 35 2100 1.30 2.25 5269 2100 3169 S= 0.0183 40 2400 1.18 2.04 5390 2400 2990 45 2700 1.08 1.88 5524 2700 2824 d= 0.2453 ft. Flow Width 12.3 ft. 50 3000 1.01 1.75 5658 3000 2658 , 55 3300 0.94 1.63 5773 3300 2473 60 3600 0.88 1.53 5870 3600 2270 A R Q Tc Tc total I Qc 65 3900 0.83 1.44 5971 3900 2071 1,61 0.12 5.00 4,19 11,79 2.88 5.00 70 4200 0.79 1.38 6115 4200 1915 75 4500 0.77 1.34 6329 4500 1829 Qpeak for Case 1= 5.00 cfs 80 4800 0.75 1.31 6588 4800 1788 85 5100 0.73 1.27 6195 5100 1695 90 5400 0.70 1.21 6832 5400 1432 95 5700 0.66 1.14 6771 5700 1071 CASE 2 100 6000 0.68 1.18 7358 6000 1356 Case 2 assumes a Time of Concentration less than 5 minutes so that the "208" TREATMENT REQUIREMENTS peak flow =.90(Tc=5 intensity)(1mp. Area) = 4.09 cfs Minimum "208" Volume Required 976 cu ft Provided Treabnent Volume 2,511 cu ft DRYWELL REQUIREMENTS - 50 YEAR DESIGN STORM So, the Peak flow for the Basin is the greater of the two flows, Maximum Storage Required by Bawstring 4028 cu ft 5.00 cfs Provided Storage Volume 4142 cu ft Number and Type of Drywells Required 0 Single 1 Double ~ . . Cl) ~ y ~ - ~ . ' _ _ _ ~ '(T~•' I ~~f~`'~ ~ (41 - ~ cn o L 0 ~ J ~ r ~ . i • ~ ''~i ' ~ • ' - , ~ ~ ' • ~ ~ - • `t..,~; ~ ' X.f"p~ :'rh~~.~ ;f 3~;aS'~ ,T, ~xy„~`~: a' a~, ! . M ~ w t~'~a ~ r ~ ~ - . iy~%Rl~k,.'~~1`'.^ i ,t~ ' ~r' 3 , ' f y~~"~~ ~ w'J 'i'y, r!"~ P. ~ ~pr ~ ' ~ a ti• ~,4nI . .1`;~: ; ~~.v , s I ;R, r s'.•` ~'t ' ~~c~1` 'j L'i` , , ~ ~ ' „ . . ' 1 , t . . ~ , t', l~. - ri . ~a,,~¢ 1 ~~c' i , ':y~ if t ~k",~,` ~ ' t t•. , '.i~~ iS i n{ r~6 ~~S + „ . +1 ' ^ ' S ~ i~:•" ~ ri~~~~;~~ - ~ ,~'~1, r"~~,c,W; <;;;r'~~' YiP,t,+l~qs,~.!',~J1~j~ ti'„ l 1o , ' ~ ~ ` ~ . ~ ' •?r'' {~~rt' ~ ~ ..',;at;;,'d 1'xr, ~ t~,,, * ,~t ,'r, ~ .~ff~,'~.r ~1,~; x, Nt" ` :n ~r ? ,{,q ; s . . ~ A.`~ f~ ~ ~ 'E ~'t}g~r~l•i,1,~~'.i;~~.'k ' 1. E{A',e i r~ ,~'r's'' i,c~~~~ . . ~rf~ . • t y ~ . i. ~ti ~ y ' y ~ . ~ ~ , ~ t~e~~ . ~ ' ~ ~nY:' • ~.H' ~.N.y '~y r"E~, a`~'s. ~ . . ~ , e ' Ni ~ 1 `1' i' ~ ,~,r.r -ys , ,r' • ' 'Y i,''y ' ' ' y:,'• . . . 1 , -'t` ~W,~ ~rt~ i ' ~'i •'1~f~; _'~r.'_ ~ . + ~ ry ~ - • , ~ , , ~ ~ , ~ ~ ~ n, ~ r.~ ~ '4•' ' „y,. r ' j~i'4 ~ '9~ Y~~~ I~.~ `4~~ 'w~y u~•^ \ ~-F~' ' ~7f ~ ~ ~.rt r ~t ,Y,` ~.J ,.~k~ - t ~'n a , ' Y ~'~~4~a Y~•wJ1~'~iK/ li ~ ~L'/,, 'Y~'~~•^ f!I~~ , .i'~ir~~:'SyI~'FL 1 4''r~A~~,1 fy.. 7 i ~ . . _ ~~~~i~'~ tI~ _~➢Gt'n~i;~!?k~~+,4C~~Ff~•'.,Y 'yii~`4,.~ y; '•r_.. .;aI~' ~ , . ' ' . . , ~,~'w.i't' . . . . ,i `r i~~~~f..}~~wA ~...CsXuit ..:.w. •:7lili~.~ . . , scenario: gase S7.YR CR'S~ ~oflA 5KEl \ Cyl 2saa a9A•CFs oa+za a's 1 m,.,eCPS. ; , , t < ~ . . . . . . . , . Q.: f 1 f, ~ - 1 ~ u ~ ~ i1~, tlr ~ ,MPCFtAAV ~P0,oC ~ ~ Scenario: Base clc associates ' Label Length Section Material Mannings Upstream Downstream Constructed Rim Average Average Additional Hydraulic Hydraulic Total (ft) Size n Invert Invert Slope Elevation Pipe Velocity Flow Grade Grade System Elevation Elevation (ft/ft) (ft) Cover (ftls) (cfs) Line In Line Out Flow (ft) (ft) (ft) (ft) (ft) (cfs) I-1 2,038.66 1.29 2,037.55 2,037.55 1.29 P-2 15.00 12 inch PVC 0.010 2,036.76 2,036.51 0.016667 0.95 6,07 2,037.55 2,037,56 1.29 I-6 2,038.51 3.04 2,037.56 2,037.56 4.33 P-3 25.00 12 inch PVC 0.010 2,036.51 2,036.24 0.010800 1.13 5.51 2,037.56 2,037.34 4.33 I-3 2,038.51 4.23 2,037.34 2,037.34 8.56 P-4 82.00 15 inch PVC 0.010 2,036.04 2,035.34 0.008537 1.96 6.98 2,037.34 2,036.48 8.56 I-7 2,039.28 1.18 2,036.44 2,036.44 9.74 P-5 137.00 18 inch PVC 0.010 2,035.24 2,033.84 0.010219 3.96 8.47 2,036.44 2,034.77 9,74 I•8 2,040.71 0.00 2,034.94 2,034.94 9.74 P-6 60.00 18 inch PVC 0.010 2,033.74 2,033.34 0.006667 1.82 7.11 2,034.54 2,034.43 9.74 0-1 2,033.00 2,034.43 2,034.43 9.74 Title: Shelly Lake 4th Addition Project Engineer. Doug Desmond j:ldocument1s0201341p1anchange10yr.stm CLC Associates Inc StormCAD v4.1 (428] 06117/03 10:23:56 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 USA +1-203-755-1666 Page 1 of 1 ~r Pr~le Scenario: Base Labe: 1-6 Rim: 2,038.51 ~ Labe : I-1 Sump. Labe : I-3 ~2,036-51 ft Rim: 2,038.66 ft Rim: 2,038.51 ft Sump: 2,036.76 ft Sump: 2,036-04 ft 21039-00 ~ : ~ 2 038.00 E evation (ft) , 2037.00 21036-00 2+75 2+ +p5 +2 %ion ft Labe: P-3 Labe: P-2 Up. Invert: 2,036.51 ft Up. Invert: 2,036.76 ft Dn. Invert: 2,036.24 ft Dn. Invert: 2,036.51 ft ~ L:15.Oa ft L. 25-00 ft Size: 12 inch Size: 12 inch S. 0.0 10800 fVft ~ S: 0.0 16667 fVft Tftle: Shelly Lake 4th Addition Project Engirteer: Doug ~smond j:ldocumentls0201341p1anchange1 0yr.stm CLC Assxiates Inc StormCAD v4.1 (4281 06f17/03 09:15:03 AM 0 Haestad Methods, Inc. 37 Brookside Road Waterbury, CT 06708 U5A +1-203-755-1666 Page 1 of 1 ~ Profile Scenario: Base Label: 1-8 Rirrt 2,040.71 ft Surrp: 2,033.74 ft . _ . _ _ . _ Labe l: 1-7 2,041.00 .-RrrY 2;03928^ft Surrp: 2,03524 ft _ Rirn 2,038.51 ft 5ump: 2,Q36:04 ff 2,040.00 - • ~ - - - - ~ 2,039.00 2,038.00 Elevation (ft) _ . _ _ , a - - - - . - - - - - - 2,037.00 12,036.00 2,035.00 2,034.00 ° 2,033.00 0+00 0+50 1+00 +~on 2+00 2+50 3+00 .abel: 4-1 Label: P-6 Label: P5 bm 2,033.40 ft Up. Invert 2,033.74 ft Up. Inve~: 2,03524 ft Label: P~ 3urrp: 2,033.00 ft Dn. Invert 2,033.34 ft Dn. Invert 2,033.84 ft Up. Invert: 2,036.04 ft L: 60.00 ft L:137.00 ft Dn. Invert 2,035.34 ft Si~e:16 inch SiZe:18 inch L: 82.00 ft S: 0.006667 ft~t S: 0.010219 tVft Size:15 inch S: 0.008537 ftfft Title: Shelly Lake 4th Addition Project Engineer: Doug Desmond j:ldocument1s0201341planchange1 0yr.stm CLCAssaiateslnc StormCADv4,1 (428] 06117/03 10:23,30 AM @)Haestad Methods, Inc, 37 Brookside Road Waterbury, CT 06708 USA +1.203.755-1668 Page i ot 1 ~ ~ CNL ~ Rip Rap Calculations Culvert into Pond C ' Pipe Diameter = 18 inches Flow Velocity = 7.11 ft/sec Flow Quantity = 9.74 cfs Tailwater Depth = 1.00 ft D5o = 0.28 ft 3Do = 4.5 ft -.Q factor based upon Tailwater Depth 1.8Q or 3Q = 29.2 cfs La = 26.4 ft W= 3Do + 0.4La = 15.1 ft Minimum Rip-Rap Mat Thickness = 1.0 ft Minumum Stone Diameter = 5 inches 1 ' , < ~ • , < °'t3:.`s, . ,.i • ' ,F'o, ' , , ~~.MY„ rt. . , , ~,r~m. n r~ •t'~ . . , ' ~ ~ J~ ~~L' ':Y!~ i h:d~,i,~ArL+,:~4~d ' . k, r • r . f, r ~ , , ' . • ,r ~t ~ ~ , , e 4 ; ~ ~ ~ 1 ~c~~ ~ 4 ~:t.~~ - ~ 4M c ~ ( , ~ ~ ,-i - - . . ~ ~ ~ ~ I ~ ~~r n~~ ' n . - • I- - - y ~ , . I- 'r ~ ~ , ~-h 1- - ' y'- . - . . t~ d £lf~. 'A~ +Y , ~ 1':,~, i' ~ ' . C• , ~ ~ ~ ~ M'R I . ~ . ' ~ . fl ~`I. . ~ • ` 1 . . . i i ' ~ ~ 1 . ~~1~ ~ P . •4 ,lly~~:~*' r.~~1~ti.~M', t~~ ~'r ~~•i,. ~ti 1 r ~ ~1 i. : ' ~ M , , ~ ~ ~ ~r, , r ~sn , _ r ~ . ' , , . t_, , „ : • . , ~ ~,.~~r,;~l'~d~i:la~~.i.~~}~~5~'i~~~~li~0~+~~,'vi~~~~e~~st'~,"~+"4~ii41L",~~~~Hi~ ~ • . ~ . !1~.~"(,.~' 4 ~ ,r'n. ; ~ " ~ a' w~y ~~~jy, ' ~ ~ `3~~~~r', :ln.~`{n, ~~_}~i,i~~~,i.'•~,o':~~~,~w~,,': i»~~ ~ ' ' ~ ~~t . , > , `~~ti'"_~6,'Y,'~~r~`~'~~ ~ R ~.~K'rf, i7~y~`~;''f,,'.~ ~',!,,~-~.r ~ , , ~ , ~ . . , ' y'~ ".!~'~f~ '~yK ,a~~~;~" fa;~~4~~~{~I '`tt~~~,;,~ s~~ ~.~ni',.Fi~~.'ati~::~''~1 it"'" ~ i - ,f':,ln . h~ l, '~~~`~;F7X~h~~ ~.,`~:Ffi ~r3~'; ~"'~'1,,, ~ + 'Y'y~i~` . . ;a~ ~N~~;7~ 'f, ,Y~~''CL ~eit,,, r{ ,~'^'~t 1. ~ ~ 'c. ; ..~hr,' ~ . . , ~~w, , i~ i- . • - , , ' , , ~ • . , . ~ , _ ' ' ~ , ~ . • ' • ' ~ . ~ 1 ~ ~ • > • ~ . . ~ V~ , ~ , . ~ ' , , ' . ~ .ti r ~1.' . , , . I~ 1~'~. ~ , ~r ~ ~ . • . y ~ 0~ . ~ . _ . ~ ~ . ~ ~ . - . ~ . . . . ~ . ; „ ~ . . . . ~ , ' m f l j F i s,.. ~,.aM ^,.,~.w, ...w r \ ! E ~?~i ~ . , . ~ , ~ ,.J ..`..r~ : f i P ~ • A '4" ~ : d.°"""y'" c r ; : ` ' : 1 I «4-4-4.,~f ~~•.,,~~6^^-~ F ° i ~ ~ _ F i'.,.'y.f°.,,~.."4"'~ ~ m F ~ ; ,....w.E,. i1 ,y, .«i .,..-,.,~...~y.~,. s e ~ S ,r`..~.~~~++~..+~. ^ Y .~.M i ~l i ~ .eu ~ f ~ { ~ ~ s { s " N ~ 'n y~~ , F ~ W { ll,~ j ~ ~ ` .w..,.yN.~~, F . ~s i •r- . I Y ~ s ° { E ,,,s, ..:.,~i t' ~ ~..F.,d.~.,.~-, : o i~ M~Wr I i ip~.~,y~. ' { G,..~~.• ~ ~ n 13 n .w~{ E ~ i { . ~ ~,.~~~.,.s,.~,,,,,.. i ~ ....~w.~,.,~?y.,..~.'~+s,W` 1 i ~ ~ j ,P,.E«.~.,,,~~ ~ ~ ~w.w,w~ f ~ r-^i ~~F• i-~~ ^ ~ ~1 ,n YI ~ ~ ,..~..q...~......~ . S ~ 3 ~ q~~ LL! i ~r F f~ • E~~ e: t~t t~ 4~€'V,,,e,,.,~ ° E E f %~f.,^,~ ~Er 2 i: E i[~~a ('1, ; ~ ' ~ o . . w^^.,~.$^-6~w~~ 1 ~ t w v ~ t i . ~ E ~ _ ~ -a ,...E ~•E....,,~,y....~ t ~ ~ i ; ~'E""f"^`i""";'"'~'"'';~'"""""~'"° ( 's ~ ~ 5 Y'y ' e € i 4 ~w~~ ~ r s i i F~~,~„_ ~ °p....c+..¢. g -r , ~ E i~~s-e ~ l ~Q N J ` ~J ~ N N ~,,,~...M.... 1' ~ C ~ ,.y... S. Q Q fA 0 ~ z _ ; , f 1 i i I 3 ~ l~~x ? 1 ~ E ! ~ ` ~ ~ ~ D ~ 1..~.......~,..~~.,i z N tll N N T'` _~i s..., 13 ...v.cwr i ~ ~ 1 ~ ~ ~l~'~- . ' ~y .~~y~.,~ ~ ; ~ ~ ,..~p.,..-3.•~• J,."°^.,~x" v,!' t' ~ _ Q) a) ~ I .~...yx , ~ , .....~..~,....~w~„«~ ~ Q~ ~ 'y^ ! W.~~ _ , I ` ` ` ; . i ~ m"'4"~ -'k"" "~.'"wl t""'+ ~ ~°'"~Z" I ' f 4 ! ~ ~ ! ` ~ { ,~.,~„.,.N«~~-~• . , E . N 4.~[~ti,.... T f,~,~„., y,~ E~ f_; ~~..«-4~.` P i ~ E ~ S i f' ' ~ z-~-• ~ w 2 F m ~ fM ' E ;-~,r a f...r ~ ~...{.,~w• c I~I RI ' ~ • E i e c 1 ~ - ! E s f/ ~ I I~ ~;,,,w.~„„ . f . . -.My- '-.v,...w.v . ~'~yy'^5~+` K . ? ~ c'" ~ ,,.a,..,~i ~ ( i •,,~,c~, ~~~wi E ~ f~ i ~ ! ~ 1 3 ~ ~ # ~ ~~,,,k .`....~,.c••~•~~~F J € ~°~^¢W"~" ',~v~~° ~ -k~: Y,.,.,rw ~ ~ t r . , { f , ~ ! 3 ~ I f ~ i o i ~ ~ a ' ~ s ' ` ~ ~ < ~ # : : ~ ~ { t } ' ' ~ s~ «,r vi ..~.~r~,.~ # ~^~•:^!°~~~j~~w`~ ` _ i. ~ ~I^' 1 ~ i f . ~z1 ~ ~ ,4{. t ~ `t'"}` ~ t . . i ( ~ ~ ~ i~~~: ~ ~ I~i E , ~ w.,w 11.,,^*^ ~ fS i d"'^. 3 ~ ~ { ¢ •"Y"'$ ~ ~ ~ r ..r... ~ ~11 ~t~w..,.~.._,..~,.'~..~,~ ~ ~ ~..,z~..... ` i t L• ~ I { s a ~ .w ; ~ i : 1 ~ i I ~ ! ! l~. , f ~~E~ ~ < I ~ E ~ ~ ~ E i ~ ~ E~}Y ~ ~ ~ T" ! ? ' • ~~...yiy,.., [ u.. ~ ~ I -4 i ~ w i j~'}"' ~ ' 'w+w ' ''~»4 [ [ + ✓ ~I ` F...~w ~»y+ l . : .,C« ~ j : V~.4 T ~ ~ -f..-c „W«„ F E E E ~+p . ,.,i ..,~.,;.....,,-,..~w.~~ f "",""'Y"'."'` ~ . ;~~wF...~~.•_~...>,.,.;,..~; ~ I £ •~.•..+-v.ww F ~ e"'s' i~" O ~ , ~ ~ 4 ~~.~....~~f `,..~i k~ E ..~.,w.~......, { E~F,.r...:.,.~ # 3 ....tp.,~.~_.wi i ~a•w~.,§,...6;~~i i ~,,,,,s' i f f 4.~, ~ ~ ~w~.... P ~ ~'4-~ ~~[..f~....uv, ' «.i ? f ~-€'-«i ! ~ ~ i^'/N'r . i i i ~,~tx„'....`_-•I ~ ` Y+ ~ w.~.... .wy,~. ~ . [ t ~ .•M,•.,.,wi..«.. ~..,...-.q... .~.«..g~.~A _ . i ~.~,w..... ' Xt.•q. i 1O ,--~~D ' t i I~.~. E f ; i i P~~~ ~ l ~ I r Yl f~ .,.~.€,m.~.,N,E,. ,;•",.,..~v . E ~ '~.'..,..,i...~y..«(....~.w, ~....~..-.+~'..~,."~'.°F-' S ' i...^y° ~..q.,..~..y ~ .~..~Iw,.r.~.~E~., ~ J ~ .~..;:~p~^~g J.,. . • K q ~ ~ , . ~,..f. ~ ~.W. f i ( ~~~~..,~,w ~.~,..!y^"a w~^r,^ •v~-~w^+r,wt.vy f .~w§~•ry:ww~ r, w„w-....r .~»~4~§• p i E ~ ~ ,~...w•'y'„",•,. iNWi~k ~ .....~v...~ { ~ t ' z «a.~~..q... • tiu.vwv 4° i { { s ' i 4!~}~ I{ E ( E F s lf; ~ Z ~ , z E ' ~ F~ s r R I ~ , ' ~ , ; : ; ~ , ~ ~ ~ Z < ~ T ~ ~ ! f ~ ~ 1•I ~ . ? ~i ~ . 4. 5.,. s . ,~.,a i ~ . . + { M b,,.,.I. .,.a~f ,f~ A O ~ F~' ~~~Y•~ .ai ~`~'I~'~,~ . , ' `y''~ _ ~ ~~~.x~~'` / •4'4 I ~ .~.ti~'~,~L~C~~ J~ ~Y ,A p a~~ ~ . ~.;..;•~5 1~y ' ".~~+~.+~-~.r ~ ~'~n~k Y,' t,~N. ~ . ~ ~ _ {,4 I }`4 S~ / ~ Y3' `~.k "s.' ri b''•,ry i ?y,~"''f~? ~r~ f ' , a~? •,Y ~n~. ~4 ~ 1~, ; r~;,~.~,,~ t,r . ~ ~ ' . • . . j ~ 'k1 ..,t,~~~N~,y~3,.~ 4. ' ~ '4 ~~qp~~~y h~+i~"~,+;tiyr ~ ~,~i~, i '~..s~tF'Jr • . . 1~'"r ~ ~'!~y~'iL t', • r , ` , a'~;~ at'~ k~t~:'~f` ^I;i . ~i. _ ' . . 'T~ 1'~ ~ y~`~~"«~ i"Y"~d •~f.~~!7;• j ~ , , ~~r r; ~ .t~ ~,~j M.i^i' ri ~ ' "+_,~y . .i,► A' f ~~ip~?~, ; ; ~~6.w.~, ~i~t~qt` ~ P'~ _ . ~v~, , y4'1{"~'ar,~r~:•~=;~,~,` ,.f ,V i ~ i, , e ~ U~ ~~,,'S}~~:'~~; !.5 a,r~. ~t~'; ~i1~~•~,~sy ~,~;~yi'^~ ar~~• .ti`~ - ~ ' , + ~y'k y JirY ~ j~~ i ~ _ YY, Z~e ~,~af~4~ •1 _ a 1 Tn n4* c rA:R T}r .yyq'~:sfd{~~m" , i ' ' y , , ~ ~ ~ i • ~ ~ h i 1'„~ i t ~ . ~f -•Y , ~ - . ..r. \f~ A4x,I, ~'~,1. . , ~ , r ' • ~ ~ I'l 4"d~^~:Y' . ~ ` ~ • ~ Y , ' ' • ~.y, 'y"~ ^,'r ~ ~ ' . , , . , . . ~ . . , ' ~•~~~a~.~ , ~ • , . rn, ~ ~ _ • ' , : ~ • ~ p•~• • „ ~ • • ti:~~~~~~'~ , ; . ~ ; ~t } ' ~r `r.~~.`~ ~ ~ . I~. '1. • I A y ' ~ •N~ 't~a~q'~ '1 ~r~t~. YF,~~'~ r: V.~.'~„' > 1~"' ~ , ~ :~f ~`~,t., 'haw t~'a~ ~r f~ . Y . , ~ , ~y~~' ~ r ~ , ",a ? • ~y'- . . ,jt"•./.µ.d`"~`1,T~'~'^'~l~,k'y•'~L?: •r J` ,t, , • : ~ ~ ~y'i7,~a. Yh.; . ` F~. . ' h ~ . ~ y ~ . ~ ' f S ~ A~f ~,a ,~I~. ~~{~'9~ ' S1„' , 1 , _ ~ • . - . • k ~r~~, ~ 4; ~ ~ , - ~ L~~~ ~ ~ i p~r.,, • nX ' J ~}I A 'i. ' , . . • , ~ ` y . ~Iiw.~i `.U~ ~t,'f~~~~i , , , _ ♦it'-' , 1~.. i . 1~ I, 3`' „ y ( ~p~ ~ ~ ' ' ` •'ti~f,'y~~y,'-''•'~~t~:•"1 .i"t~~, ...,y+'~~,v'~ ~r: 141 :''c' • • ~ • ' ~ 1 { ~'M .,f ';r.4~i,im n:. ' . ~.ie ~ ' ~ , ' ~~o ~ ` ' 'r R` • ( ~ ~ ~ . h+ ' y ~ ~ ' ~ , -~F ~ ~ • ~ - ~ . ~ r ~ i ~ . r , ' ` ' 1 .i ~ ~ . • f'S vn, 'ti; ~ -'tG,tv.:t~.~f h,u ~i`