Loading...
28100 DRAINAGE REPORT ' - SHELLEY ACRES ADDITION D AGE REPORT -V `Project No. 97-035 FtE OCT j5 1999 7une 17, 1999 gppKANE COUNjY ENGiNEIEA Re►: se.a 41i3 J99, . f Q~FlC1AL PUBLtC D4C VOi(ANE COUNTY EN-CIREER'S OFFM 4 aAS~~A A.MW • IY Q R S•- O ~ 3 , pf~0,1'ECT 4 - Z W$MiTTAL 30891 a, RETUFtN tiU t;vUNTY ENGINEER 134B16 ~O ssJ0NA~ a~ RECEIVED EXP{RE8 Z/211a, _ SEP 2 21999 ' ENGINEER'S STATEMENT: SPOKANE COUNTY ENGINEER The design improvements shown in this set of calculations conform to the applicable ' editions of the Spokane County Standards For Rorrd And Sewer Construction and the Spokane County Guidelines For Stormwater Management. All design deviations have been approved by the Spokane County Engineer. I approve these calculations. ' Prepared By: Metro Engineering, InG S. 324 Sherman St. Spokane, WA 99202 Ph.: (509) 624-9351 Fax: (509) 624-8153 , DRAINAGE REPQRT Project DescriQtion The project is Shelley Acres Addition, a proposed thirteen (13) lot plat, located in the Spokane Valley. The lots will be approximately an acre in size. The project will consist of one (1) public street (Steen Court) and one (1) private drive (Courtney Lane). Steen Court will be an extension of 12thAvenue. Please reference the on-site drainage basin map, which follows on page B-1, and the design plans. Drainage Calculations. Offsite Drainage There are two (2) offsite drainage basins, labeled A and B(see page A-1 and B-1). The offsite flow will not be intercepted by ditches and will continue to run along the south and east perimeters of the plat. Basin B and a portion of Basin A will be combined with the appropriate on-site basin. For this combined basin a 50-year storm event was used for analysis, since a portion of the flow is from offsite. The ofFsite flow is relatively sma11. On-Site Drainage The project will have five (5) on-site drainage basins (see page B-1). The drainage basins will drain to standard `208' ponds. Stormwater will infiltrate out of the ponds. Larger storm events will overflow into the drywells for subsurface discharge. The ponds were sized using the Rational and Bowstring methods, for a 10 yr. storm event (except for Basins A and E which used a 50 yr. storm event, since they include offsite flow). Calculations for sizing the `208' ponds and drywells are included in the report. ~ The site is located in Garrison and Phoebe soils per the SCS soils survey (see the soils map located on page B-2), therefore, the use of standard drywells is allowed. ' The drainage from the streets will be intercepted by curb inlets or catch basins. The calculations for sizing the inlets, grate and storm sewer line are included in the report. IN, AGE OF-FSI.TE DRA ► _ -~r- ~ S3 :V . • ~ ~ / . . - : ~ . ~ ~ Z -■~/e ~ .r~ S •ry ~ a . ' ~ ~%tt • . . ~ . ILOO ~ ~y+ r { ` ~ . s!'A . , • . . _ ~ ~ ' • o . , ~ /000, ~Z00 ` ' . t 3t . ~ G~ i X . ~SZ . r 7 +'~q { .d ~ \ ~E - . ~ t S t ! ~ ~ - tt ~ ► ~ . ~ ~ 1 7 f 4e { t t ! r * ZZ , _ Li Qa t I ~ A-C rN s.--- ~ 514v,~gs 4 + ~ . . eS • t ' . ~ • ~~`5'~' yG b : ~ j ; ~ , 1 . Jo..y~ : ~o, i~ /b SPOKAN ECOU NTY, WA.'--l'H I NGTON - R. 44 E. ~ R. 45 E. ' . 1--~ ,•x~t~~,,.: s y :^>~T!" qy' ~ { > ' ~~4 G •b,.~- : fi ~}".p'' V^'.,~.,~5' ."`~~L, E.~y~ x, tt. ,•t~,• 4: - , • 'Y iR a; ' .v w:i~',~~y ik i' ~~S v ~ r.3 y ~ ~i - - - , s~ Tt ~ x~- • . 5 ' • • ~ A UL 9 ';w~+i~ ~#i6 D.w,eS.•~~i~~-~'w~ ~ ~ I' "~R' ~~:Y' ~ ~ ~ Y ~ '....a~ ~ ~ + » ~ Y~• + ~ y~ ~ 1 ' ~ ' h . . , i.y ~yN ~ ..c..,~•• ~~<M ~ , 'c$ ^ a ry-. ^Q i,)I- • :4~ g . . ~ v~eY+: . > t • ? . ~ . ~ . i.: ~ ~ '~S .~;pl~•s" ' j~/y;'Y> . ' . - I~ t ~ . i " . f, b~ '+$RS 7«a~~ +'E ~a ° . +4r v~..Ti~~~'a. s.~t'~ :4~a;~♦ ~'j. `~~s~J. Z:~rQ+r ' +~~~~J'6 a~..~' q.~ . ~ ~y~' ¢ , ~ `4a rY 4' ,C;~~ ,'~ar.; y=eAe~ ~ ~ ~K;2S'y .,~T~^ , r+I~~ ~ ~ ~ ~ •v ~ 3"'; _r ' t ~ g , ~ ' • , ~•41 ~~C~~, L j. ' ' • ~'I 3 , ~ - " K . .s. • ' • Z' ~ . . ~ ,~-•~:L~ ~ • ~ , , ~`~,~c~ ~ , . . a - ~ t ~ xwiw►+4~ .~S ?!jt,~ ` ' . •1, ~ ~ t ,~.;•~_;Yyr _ ke ~ . y~ f' ~ ~ ~ . •~r ` 1t • ~ ~ ♦ ' • ~ I ~ ♦ • tis; t - ~ : ' • , - , , a . - i tV ~ - i t ~MM4~ • - ~ ' ti~ js t ;:1. C .~~s .R • , C £ ' , ' .a ` , ~ - v/ G~ ~,~f~.~' • , . ~ ~ . . :h ~ ~ ~ . V ~ ~ ~ CkC uf~ . : ' - ~ ~t• s 24 ntral VaIIQ y /T~ ^ . s • VhVOl • ' ' ~e ~ . ~ - A T f 'XI , ♦ 6 ~ '•~~S`~°; 'a. ~ ti~~ . ' • ~ ~ ~ ` ~ ~ ° ~ ~v ~ . , ~.p ~ . w~ ~ wiY : ~ • ~ , .Y'' ;.7'~~ r . , k 5 . ~ " . . . . ~~t ,~y $ • • ~ ~ Wt„ - . ~'~,nA f - ' T' . i1.J' • • 's,~'a~t'~"s~r~ . . ~ . . ' ' , ' f % ..'k oti3t ~ • ~f~~~ '~k'" ; • • A : t ` - . x> n . , , . c'~' Tsr•• , ' - s~ • y~ . , . , o: / • i6e1'' X ~:.7'-K ♦ F.. ' ~rf. ' - 'y.°'. ~ _ ' ~ .L ~ p~• • s~O.~ f~r,t~,~,~ M °3~?* ~ ~~F` '~Y •f , Y~' f ~ ' ~t' , ~ ' ~ ~ Y ~ ' . ~ ~0~~ ~ ~ 1 . • i ~ rfi , . , kY+£•F r .1.• '5....a. jy ~ ` •~•~,~s ' ~ S A • • ~ N Y ♦ ~ • r1 4 . e' H.!t i a yq~+! ~ .p~• ~ • > ,c~•<~'Pr~~~a ; y , c ~•^'~s.~ ~ } ~ x_ f a vs . a ~.v,~xs~~y - i~M,~YC ~...i i~Y:~~s=r~'~7:~~i„".: . r'h~ ~ a= ' ~ - R• fi A qy;i ..`i'`ttfrv~ 7a'~~. ,`.;t°Sj+T`•' S - ~ f ~~~r', = ~ ~ ' ~ A' yy ' • .~w~✓•ryws~.w - , s; , V ~ _ ;G °.~14A•,x~~A ° ~a' 't Y ~,/SQ ~ , . . * , v - ~~r , • ~y . . = . ~ . , ,U h B YAR ~ ~~°«M~- • • ' . " . , ~ > ;u,~:,.." ' ~~h~t ti~ IY • • V • ♦^V' ~t • ~ v M~.. w~~~ 1~~SSj~ O w • ~ ` } ~ r•l~A- • • , - ~ . ~ X• ` • ` ,f~'f~i! Y V' ~ f Vl~ hn,.,• ji . '~N ~ ~ ~ ~ t ~ ~ •Y~ V • y , ` 9 ~ ~a~ ~ ~ . ~,,,~.y~1. . ~ . ~r ~ sr~5 Y i: ~ ~ ~•S•a• ~~,~~E ~ . r •~•KL'vw'fi . = ~ . ~Sy iy ,,~.+i,,~li 'Y . 4 ~w~~ ~ ~ " • . Y Nt ~ ~ ~~p►" J . %3,~t~" ~L ~ s . • ; . ~'dN~S.-~~~•' ~ - - . T~ :c5~};~ . "'4~~~~ • ~ iY ~ « 1 ~ La B . F ~ n U 1 1 ~ > V I2 " 4k ~ Ya i ~ • , + r ~ ~ U ~ S :~`~rF,~:::~F~,~~• 4 i,; ~ 'a . , ~ ~ y , ~ • i ~ _ ^.:t%, `~:s,;:~ { ' , r ~ •`x • •T~`~.1r• ~ \ • Bk vO✓4 • r • ,w~ ,a:2~;~i"' . l....: G~ 8f g !s *SOILS t B . . ~ ' . # w~~•' ' ~ , y • A 1 ~ . A P •,~iQ y~, ~ • B~ A-2 , , -41 ~1t- pC Q • ~ • • • UN-SITE DRAINAGE , ~ r ~ ~ ~ ~ ~ ,9 ~ a~ ~ 4 ~kt ~ L{~ r7 • • -v.> tc PATI-I , - ~ C) ~ ' ~ Q .~0 10Q 2fl0 - W I i~ ~ 1 SCA.LE. 1 = 100 . - , - r ~ ~ 30b9 I Ql ~i . f ~ ~ 4 ~ ti ~ . ~ ~IST'E ~ ~ ~ ~ 7 t , Q ~ • s z ~ q , , slo , ~ . ~ ~ ~ rr, t~;~ ~ , - Z o CL ~ ~ ExPla~s uz~r ~ ~ 0 . , ~ ~ Q w (D r- ' ~ ' . . , , ~ , . ; , / , ~1FF-S17E 3ASIN B' . . ~ ~ , , . , ;a s r~ P E ~ P~ , ~ . . , ~~r~ . ~ , , ~ ' ' ~ . ~ ~ , C) 0- , , _ C - . , ' ~ a~ ~ ~ \ \ . Z ~ ~Fa'°t . ~ +y ~--^~-rE-'~c " ` \ 1 , , . e ~ ~ ~ 9 ~ , ~ , . , . - ...r-' _ `+'~''~'t W , , -c- - - ;r ~ ~ \ ~ . ` r . . .J ~ ~ ~ ~ • • ~ ~ v ~ ~ ~V) ~ . A~ ~ ~ ~t , ~ ~ ~ ~ :a a ~ i ~ . ~ ` ~ ~ ' ~ e ; / / ~ ~ I; ' ~ I ~ , '1 ~ J~c ~ \ , • _Q , ~ ~ ~ ~1 ~ ~ f f X ` ~ ~ ` I ' ~ ~ , 1 a r' ~ ~ / ,1~ 7 5 ~ \ ~ , ~.l fn m cl ~ + I i ; ~s ~ ~ ~ L 1 ► , ~ / ~ t ~ 2 ~ ~ , , ` .t ~ ~~P S,1 ~ • E+ , ~ 1 , ~ 1'~', , ' . , i . ✓ ~ ~ , ~ ; , ` a ` 0 1~ ' ~ , i~ `6 , `Y~ ' \ 'J, s• ' ` i ' • . ~ . , j, ~ ~ n,~, i ~ '7{, o , iJ ~ z; ~ , , , ► "o J , , ' ~ ~ ~ ~ ~ , 1 ` ` ' „~P w ~ l , ~ , ~ , , . ~ U 1 , . , . . . ; , ~ ~ ' ~ . _ . ~ . • ~ , , . , , w ~ , . ' • , , , ~ ~ti.~~.~-. • rr 1 ` - 1 1 ~ 4- - ~ . _ I' , ~ % C?FF ~ITE B~1~Inl B , ' . ~ / E,~nJ- ' • ~ . . , ~ . ~ . . ~ ~'S . ~ . c~, ; , r.... . ' , . : ~ • _ _ ~ ~ • .o d _ . , L•~ ~ . '.1.- \ ~ , . , , . ~ f ~ ~ . ~ , 'ti . • ~ • :u . , , ~ • ~ ~ \ • ~ _ • . . ~ % , ~ . • • ; . „r-j~' ~ ~ _ ,p / ~ • ~ • u~• , _ / ~ - . , , . , \`1 , ~ ~ ~ / , - • . ~ ~ _ ~~~SS'~ . ( ~ ~ ~ ~ ~ • / ~ ~ /I i ) ~ 1 ~ , ~ . ~ ~ ~,~i/ ~ ~ 1 ~ ~ " _ I ~ : \ ~ ~i" ~r~.l. ~ ' • \ 1 -:'~',Xt . , I I ~ .,f • ~ . . ~ . . ~ • ` pa5 _ , - .1 ~ w ~ • ~ / ~ 1~ ~7'•~ , w ~ ~ ~ . ~1 ~ a ~ ~ ~ , . r ~ a.~ ~ ~ ~ , . ~ . / ~ . ~ . . . . ~ A, , u . ~ , r~ S . . ~ . L9 . ~?6,,~'-- l ~ • ~ -1 , f ~ , , f 1 ~ N zo~ . ~ tt ~9 ~ ~ , • ~ . . ~ t , ~ <o Lo r' . - • • ~ ~ , . ; . . % ~ . ~ ~ 3 WQ a W =3::~- ' / . , • ° i ~ (n N l / . ~ . ~ I 1 l.Lj ED n d' . ~ r / Q k ~ ~ 1 00 ~ . ~ , ~ , ~ ll'1 ; V~ 5l!B-eASIN o~ ~ r1 , ~p~r ~ / ~ ~ ~l ~ • ~ ! • . . _ r• ~ / ~Na~ in~~I~idc~Cl in '~tt~eel ~ . , . ~ ~ - , t . , ~ , / 11~~trd, hut i~~iclud2d in ~~ndl ~ ~ w ~ ' ~ / ~ . . > ~ ;[oL••• _ . - - ~ ~ -27~'' ,~L~ -loss • • - • . , . ~ 1 . S , + , G I _ _ ~~SIN P' ~Bf~ E ~1~TE~ ~ ~ ~ , ~ ~ : , ~ 0 a " , ~ ~ C ~ i'1> SHELLEY ACRES ADOITION _ POST DEVELOPMENT BASIN DATA BASIN BASIN AREA BASIN AREA 208 TOTAL PERVIOUS COMPOSITE SQ. FEET ACRES IMPERVIOUS IMPERVIOUS AREA C-VALUE AREA AREA ACRES SQ.FEET ACRES SQ. FEET SQ. FEET A(8 OFFSITE B) 234,060 5.37 11,650 21,650 0.50 212,400 4.88 0.22 B 86,249 1,99 11,186 16,186 0.37 70,063 1.61 0.29 C 142,877 3,28 22,428 32,428 0.74 110,449 2.54 0.32 D 47,045 1.08 8,523 11,023 0.25 36,022 0.83 0.33 E($ OFFSITE B) 66,378 1.52 6,053 8,563 0.20 57,825 1.33 0.25 Notes: 1) 208 impervious area includes the streets and 600 s.f. for each driveway. 2) Total impervious area inciudes the street, drivway and 2500 s.f. home on each lot. W ~ . V ~ - ~ BOWSTRING METHOD (FIFTY YEAR STORM DESIGN) PROJECT: Shelly Acres DETENTION BASIN DESIGN BASIN: A&OFFSITE B DESIGNER: JGL GRAVEL BED PROPOSED DATE: 22-Jan-98 0 Gravel bed floor length 0 Soil Perc rate (in.mr.) 0 Gravel bed floor width 0 Gravel bed floor depth Total Area (calc.) (see H1) 5.37 Time of Conc. (calc.) (see H1) 6.53 Composite "C" (calc.) (see 1-11) 0.22 Time of Conc. (min) 6.53 Area (Acres) 5.37 C Factor 0.22 ~ 208 Impervious Area (sq. ft.) 11650 1800 Pond floor area Volume Provided (cu. ft.) 208: 1004storm (total) 2219 surface: 2219 1/ u/g: 0 Outflow (cFs) 1 TYPE B DRYWELL 1 0 Area • C" Factor 1.18 #1 #2 #3 #4 #5 #6 #7 Time Time Intensity Q dev. V in V out Storage Inc. Inc. (min.) (sec.) (in./hr.) (cfs) (cu. ft.) (cu. ft.) (cu. ft.) (#1'60) (A'C''#3) (Outf.W) (#546) 6.53 391.52 4.16 4.91 2576 391.52 2184 5 300 4.58 5.41 2173 300.00 1873 10 600 3.20 3.78 2769 600.00 2169 15 900 2.47 2.92 3012 900.00 2112 20 1200 1.98 2.34 3116 1200.00 1916 25 1500 1.67 1.97 3220 1500.00 1720 ' 30 1800 1.46 1.72 3332 1800.00 1532 35 2100 1.30 1.53 3427 2100.00 1327 40 2400 1.18 1.39 3529 2400.00 1129 45 2700 1.07 1.26 3579 2700.00 879 ~ 50 3000 1.00 1.18 3699 3000.00 699 55 3300 0.92 1.09 3729 3300.00 429 60 3600 0.87 1.03 3834 3600.00 234 , . 65 3900 0.82 0.97 3904 3900.00 4 ~ 70 4200 0.80 0.94 • 4092 4200.00 -108 75 4500 0.77 0.91 4211 4500.00 -289 80 4800 0.75 0.89 4368 4800.00 -432 ~ 85 5100 0.72 0.85 4448 5100.00 -652 90 5400 0.70 0.83 4572 5400.00 -828 95 5700 0.69 0.81 4751 5700.00 -949 100 6000 0.67 0.79 4851 6000.00 -1149 DRAINAGE POND CALCULATIONS Required grassy swale pond storage volume = Impervious Area x.5 in./ 12 in./ft. = 485 cu. ft. provided: 1004 cu. ft. OK! DRYWELL REQUIREMENTS - 50 YEAR DESIGN STORM Maximum storage required by Bowstring = 2184 cu. ft. provided: 2219 cu. ft. OK! 9-3 FLOW CALCULATION BASIN - A&OFFSITE B Tc (ovedand) Tc (gutter) Areas "C" A*C Ct = 0.15 L2 = 200 0.50 0.90 0.45 Z1 = 50 3.92 0.15 0.588 L1(A) = 450 Z2 = 3 0.95 0.15 0.1425 N(A) = 0.4 B= 0 0.00 0.00 0 S(A) = 0.2 n= 0.016 0.00 0.00 0 s= 0.02 0.00 0.00 0 Tc (A) = 5.48 d= 0.241 0.00 0.00 0 Total A Comp "C" L1(B) = 0 Tc (gu) = 1.04 5.37 0.22 N(B) 0 S(B) = 0 Tc(A+B) = 5.48 Q=C*I*A= 4.91 Tc (B) = 0.0 Tc(tot.) = 6.53 Q(est.) = 4.92 Intensity = 4.16 A = 1.5391465 WP = 12.8145 R = 0.1201 V = 3.20 Tc (total) = Tc (overland) + Tc (gutter) Tc(gu) = 1.04 Tc (overiand) = Ct"'(L1 *NIS"0.5)^0.6) Q(est) = 4.92 Ct = 0.15 L1 = Length of Overland Flow Holding = 7.13 N= friction factor of overland flow (.4 for average grass cover) S= average slope of overland flow . Tc (gutter) = Length (ft.)Nelocity (ft./sec.)/60 B= Bottom width of gutter or ditch Z1 = inverse of cross slope one of ditch Z2 = inverse of cross slope two of ditch d= depth of flow in gutter (estimate, check estimate with Flow) Area = d"B+d"2/2"'(Z1+Z2) Wetted perimeter = B*d+(1/sin(atn(1lZ1))+1/sin(atn(1/Z2))) Hydraulic Radius = R= Area/Wetted Perimeter ' Velocity = 1.486/n"R".667*s^.5 Flow = Velocity*Area n = 0.016 for asphalt s= longitudinal slope of gutter Floor outflow =(.36"depth/hr per sq.ft. floor) "(1 ft depth/12") *(1 hr/3600 sec) = 0.00000833 cfs per sq.ft. of floor area Gravel Bed outflow =(soil perc rate, in./hr.)*(1 ft. depth/12')*(1 hN3600 sec)*(gravel bed floor area, sq. ft.) Storm Volume: U/G = gravel bed volume " .30 Surface = Volume above grate elevation 8-y ~ BOWSTRING METHOD (TEN YEAR STORM DESIGN) PROJECT: SHELLEY ACRES DRAINAGE SWALE DESIGN BASIN: B DESIGNER: JGL DATE: 4-Mar-99 Total Area (calc. )(see H 1) 1.98 Time of Conc. (calc.) (see H1) 6.69 Composite "C" (calc.) (see H1) 0.29 Time of Conc. (min) 6.69 ~ Area (Acres) 1.98 C' Factor 0.29 208 ImpeNious Area (sq. ft.) 11186 936 Pond floor area Volume Provided (cu. ft.) 208: 626 storm (total): 1255 surface: 1255 ulg: 0 Outflow (cfs) 1 0.00 Area * C" Factor 0.57 #1 #2 #3 #4 #5 #6 #7 Time Time Intensity Q dev. V in V out Storage Inc. Inc. (min.) (sec.) (in./hr.) (cfs) (cu. ft.) (cu. ft.) (cu. ft.) (#1 *60) (A'C'#3) (Outf.*#2) (#5-#6) 6.69 401.40 2.86 1.64 884 401.40 - 483 5 300 3.18 1.83 734 300.00 434 10 600 2.24 1.29 948 600.00 348 15 900 1.77 1.02 1054 900.00 154 20 1200 1.45 0.83 1113 1200.00 -87 25 1500 1.21 0.70 1138 1500.00 -362 30 1800 1.04 0.60 1157 1800.00 -643 35 2100 0.91 0.52 1169 2100.00 -931 40 2400 0.82 0.47 1195 2400.00 -1205 45 2700 0.74 0.43 1206 2700.00 -1494 50 3000 0.68 0.39 1225 3000.00 -1775 55 3300 0.64 0.37 1264 3300.00 -2036 60 3600 0.61 0.35 1309 3600.00 -2291 65 3900 0.60 0.34 1391 3900.00 -2509 ' 70 4200 0.58 0.33 1445 4200.00 -2755 75 4500 0.56 0.32 1492 4500.00 -3008 80 4800 0.53 0.30 1503 4800.00 -3297 ' 85 5100 0.52 0.30 1564 5100.00 -3536 90 5400 0.50 0.29 1590 5400.00 -3810 95 5700 0.49 0.28 1643 5700.00 -4057 100 6000 0.48 0.28 1692 6000.00 -4308 "208" CALCULATIONS Required grassy swale pond storage volume = Impervious Area x.5 in./ 12 in.fft. = 466 cu. ft provided: 628 cu. ft. OK! 10 YEAR DESIGN STORM-STORAGE CALCULATION Maximum storage required by Bowstring = 483 cu. ft provided: 1255 cu. ft. OKI ~ -S ~ PROJECT: SHELLEY ACRES RATIONAL EQUATION (FLOW CALCULATION) BASIN: B DESIGNER: JGL DATE: 04-Mar-99 ' Tc (overland) Tc (gutter) Areas "C" A"C Ct = 0.15 L2 = 5501 0.37 0.90 0.333 Z 1= 50.0 1.61 0.15 0.2415 L1(A) = 100, Z2 = 3.0 0.00 0.90 0 N(A) = 0.4 B= 4 0.00 0.00 0 S(A) = 0.01 _ n= 0.416`' 0.00 0.00 0 s= 0.400 ~ 0.00 0.00 0 Tc (A) = 5.46 d= 0.091 0.00 0.00 0 Total A Comp "C" L1(B) = Q Tc (gu) = 1.23 1.98 0.29 N(B) = 0 S(B) = 0 Tc(A+B) = 5.46 " Q=C'I'A= 1.64 Tc (B) = 0.0 Tc(tot. ) = 6.69 Q(est. ) = 1.64 Intensity = 2.86 A = 0.2194465 WP = 4.8387 R = 0.0454 V = 7.46 Tc (total) = Tc (overland) + Tc (gutter) Tc(gu) = 1.23 Tc (ovedand) = Ct'(L1'N/S^0.5)^0.6) Q(est) = 1.64 Ct = 0.15 L1 = Length of Overiand Flow Holding = 19.60 N= friction factor of overland flow (.4 for average grass cover) S= average slope of overland flow Tc (gutter) = Length (ft.)Nelocity (ft./sec.)/60 B= Bottom width of gutter or ditch Z1 = inverse of cross slope one of ditch Z2 = inverse of cross slope two of ditch d= depth of flow in gutter (estimate, check estimate with Flow) Area = d'B+dA 2l2*(Zl+Z2) ' Wetted perimeter = B'd+(1/sin(atn(121))+1/sin(atn(1/Z2))) Hydraulic Radius = R= Area/Wetted Perimeter Velocity = 1.486/n*R^.667's^.5 Flow = Velocity*Area n = 0.016 for asphalt s= longitudinal slope of gutter . ~~b ' BOWSTRING METHOD (TEN YEAR STORM DESIGN) PROJECT: SHELLEY ACRES DETENTION BASIN DESIGN BASIN: C DESIGNER: JGL ~ DATE: 5-Mar-99 Total Area (calc.) (see H1) 3.28 Time of Conc. (calc.) (see H1) 6.16 Composite "C" (calc.) (see H1) 0.32 Time of Conc. (min) 6.16 Area (Acres) 3.28 C' Factor 0.32 208 Impervious Area (sq. ft.) 22428 1886✓Pond floor area Volume Provided (cu. ft.) 208: 1122 storm (totaf): 2245 ~ surface: 2245 . u/g. 0 Outflow (cfs) 1 0.00 Area ' C" Factor 1.05 #1 #2 #3 #4 #5 #6 #7 Time Time Intensity Q dev. V in V out Storage Inc. Inc. (min.) (sec.) (in./hr.) (cfs) (cu. ft.) (cu. ft.) (cu. ft.) (#1'60) (A'C-#3) (Outf."#2) (#5-#6) ~ 6.16 369.69 2.96 3.10 1536 369.69 1166 5 300 3.18 3.33 1338 300_00 1038 10 600 2.24 2.35 1702 600.00 1102 15 900 1.77 1.85 1901 900.00 1001 20 1200 1.45 1.52 2013 1200.00 813 25 1500 1.21 1.27 2060 1500.00 560 30 1800 1.04 1.09 2097 1800.00 297 35 2100 0.91 0.95 2121 2100.00 21 40 2400 0.82 0.86 2168 2400.00 -232 45 2700 0.74 0.77 2189 2700.00 -511 50 3000 0.68 0.71 2225 3000.00 -775 55 3300 0.64 0.67 2295 3300.00 -1005 60 3600 0.61 0.64 2379 3600.00 -1221 65 3900 0.60 0.63 2529 3900.00 -1371 ' 70 4200 0.58 0.61 2627 4200.00 -1573 75 4500 0.56 0.59 2712 4500.00 -1788 80 4800 0.53 0.55 2733 4800.00 -2067 ~ 85 5100 0.52 0.54 2845 5100.00 -2255 90 5400 0.50 0.52 2893 5400.00 -2507 95 5700 0.49 0.51 2989 5700.00 -2711 100 6000 0.48 0.50 3079 6000.00 -2921 , "208" CALCULATIONS Required grassy swale pond storage volume = Impervious Area x.5 in./ 12 in.fft. = 935 cu. ft provided: 1122 cu. ft. OK! 10 YEAR DESIGN STORM-STORAGE CALCULATION Maximum storage required by Bowstring = 1166 cu. ft, provided: 2245 cu. ft. OK! a-7 ' ' PROJECT: SHELLEY ACRES RATIONAL EQUATION (FLOW CALCULATION) BASIN: C DESIGNER: JGL DATE: 05-Mar-99 Tc (overland) Tc (gutter) Areas "C" A"C Ct = 0.15 L2 = 400 ~ 0.74 0.90 0.666 Z1 = 50.0 2.54 0.15 0.381 L 1(A) = 100 j Z2 = 3.0 0.00 0.90 0 N(A) = 0.4 B= • 0 - 0.00 0.00 0 S(A) = 0.01 J n= 0.016 0.00 0.00 0 s= 0.500/ 0.00 0.00 0 Tc (A) = 5.46 d= 0.111 0.00 0.00 0 Total A Comp "C" L1(B) = 0 Tc (gu) = 0.70 3.28 0.32 N(B) = 0 S(B) = 0 Tc(A+B) = 5.46 Q=C'I*A= 3.10 ~ Tc(B)- 0.0 Tc(tot.) = 6.16 / Q(est.) = 3.11 Intensity = 2.96 A = 0.3265065 WP = 5.9021 R = 0.0553 V = 9.53 Tc (total) = Tc (overland) + Tc (gutter) Tc(gu) = 0.70 Tc (overland) = Ct*(L1 *N/S^0.5)^0.6) Q(est) = 3.11 Ct = 0.15 L1 = Length of Overland Flow Holding = 14.25 N= friction factor of overland flow (.4 for average grass cover) S= average slope of overland flow Tc (gutter) = Length (ft.)Nelocity (ft./sec.)/60 B= Bottom width of gutter or ditch Z1 = inverse of cross slope one of ditch Z2 = inverse of cross slope two of ditch d= depth of flow in gutter (estimate, check estimate with Flow) Area = d'B+d^22"(Z1+Z2) . Wetted perimeter= B*d+(1/sin(atn(121))+1/sin(atn(122))) Hydraulic Radius = R= Area/Wetted Perimeter Velocity = 1.486/n'R".667's^.5 ' Ftow = Velocity'Area , n = 0.016 for asphalt s= longitudinal slope of gutter ' . ' BOWSTRING METHOD (TEN YEAR STORM DESIGN) PROJECT: SHELLEY ACRES DETENTION BASIN DESIGN BASIN: D DESIGNER: JGL DATE: 3-Jun-99 Total Area (calc.) (see 1-11) 1.08 Time of Conc. (calc.) (see H1) 5.81 Composite "C" (caic.) (see H1) 0.32 Time of Conc. (min) 5.81 Area (Acres) 1.08 C' Factor 0.32 208 Impervious Area (sq. ft.) 8523 68 Pond floor area Volume Provided (cu. ft.) 208: 403 s#orm (total): 805 surtace: 805 u/g: 0 Outflow (cfs) 0.3 'O.-OD Area • C" Factor 0.35 #1 #2 #3 #4 #5 #6 #7 Time Time Intensity Q dev. V in V out Storage Inc. Inc. (min.) (sec.) (in.mr.) (cfs) (cu. ft) (EU. ft.) (cu. ft.) (#1 *60) (A'C"#3) FOu#.'#2) (#5-#6) 5.81 348.47 3.03 1.06 494 104.54 390 5 300 - 3.18 1.11 447 90_00 357 10 600 2.24 0.78 _562 9.80_00 382 15 900 1.77 0.62 630 270.00 .360 20 1200 1.45 0.51 668 360.00 308 25 1500 1.21 0.42 684 450.00 234 30 1800 1.04 _0_36 697 540_00 957 35 2100 0.91 0.32 706 630.00 76 40 2400 0.82 0.29 722 720.00 2 45 2700 0.74 0.26 729 810.00 -81 50 3000 0.68 .0-24 _741 .9D0_00 4.59 55 3300 0.64 0.22 765 990.00 -225 60 3600 0.61 0.21 793 1080.00 -287 65 3900 0.60 0.21 843 1170.00 -327 70 4200 0.58 A20 B75 126D.00 385 75 4500 0.56 0.20 904 1350.00 -446 80 4800 0.53 0.19 911 1440.00 -529 85 5100 0.52 0.18 948 1530.00 -582 ~ 90 5400 0.50 .0. ).7 964 1620.00 -656 95 5700 0.49 0.17 996 1710.00 -714 100 6000 0.48 0.17 1026 1800.00 -774 "208" CALCULATIONS . Required grassy swale pond storage volume = Impervious Area x.5 in./ 12 in.Ift. = 355 cu. ft. provided: 402.5 cu. ft. OK! 10 YEAR DESIGN STORM-STORAGE CALCULATION Maximum storage required by Bowstring = 390 cu. ft. provided: 805 cu. ft. OK! f ~ PROJECT: SHELLEY ACRES RATIONAL EQUATION (FLOW CALCULATION) BASIN: D DESIGNER: JGL , DATE: 05-Mar-99 Tc (overland) Tc (gutter) . Areas "C" A'C Ct = 0.15 L2 = 450 0.25 0.90 0.225 Z1 = 50.0 0.83 0.15 0.1245 L1(A) = 50 Z2 = 50.0 0.00 0.90 0 N(A) = 0.4 B= 0 0.00 0.00 0 S(A) = 0.01 n= 0.016 0.00 0.00 0 s= 0.100 0.00 0.00 0 Tc (A) = 3.60 d= 0.079 0.00 0.00 0 Total A Comp "C" L1(B) = 0 Tc (gu) = 2.20 1.08 0.32 N(B) = 0 S(B) = 0 Tc(A+B) = 3.60 Q=C"I*A= 1.06 Tc (B) _ . 0.0 Tc(tot.) = 5.81 Q(est) = 1.06 Intensity = 3.03 A = 0.31205 WP = 7.9016 R = 0.0395 V = 3.40 Tc (total) = Tc (overland) + Tc (gutter) Tc(gu) = 2.20 Tc (overland) = Ct'(L1'N/S^0.5)"0.6) Q(est) = 1.06 Ct = 0.15 L1 = Length of Overland Flow Holding = 16.03 N= friction factor of overiand flow (.4 for average grass cover) S= average slope of overiand flow . Tc (gutter) = Length (ft.)Nelocity (ft./sec.)/60 B= Bottom width of gutter or ditch ~ Z1 _ inverse of cross slope one of ditch Z2 - inverse of cross slope two of drtch d= depth of flow in gutter (estimate, check esfimate witfi Flow) . Area = d"B+d^2!2*(Z1 +Z2) Wetted perimeter = B'd+(1/sin(atn(121))+1/sin(atn(122))) Hydraulic Radius = R= Area/Wetted Perimeter Velocity = 1.486/n'R^.667*s^.5 ' Flow = Velocity'Area n = 0.016 for asphalt s= longitudinal slope of gutter - , S v~~ , BOWSTRING METHOD (FIFTY YEAR STORM DESIGN) PROJECT: Shelly Acres DETENTION BASIN DESIGN BASIN: E&OFFSITE B DESIGNER: JGL GRAVEL BED PROPOSED DATE: 22-Jan-98 0 Gravel bed floor length 0 Soil Perc rate (in./hr.) 0 Gravel bed floor widtli 0 Gravel bed floor depth Total Area (calc.) (see H1) 1.52 Time of Conc. (calc.) (see H1) 5.68 Composite "C" (calc.) (see H1) 0.25 Time of Conc. (min) 5.68 Area (Acres) 1.52 C' Factor 0.25 ~ 208 Impervious Area (sq. ft.) fi053/ 552 Pond floor area Volume Provided (cu. ft.) 208: 310'' storm (total) 686 surface: 696✓ u/g: 0 Outflow (cfs) 1 TYPE B DRYWELL 0.3 0 Area * C" Factor 0.38 #1 #2 #3 #4 #5 #6 #7 Time Time Intensity Q dev. V in V out Storage Inc. Inc. ' (min.) (sec.) (in.lhr.) (cfs) (cu. ft) (cu. ft.) (cu. ft.) (#1"60) (A'C"#3) (Outf."#2) (#5-#6) 5.68 340.75 4.39 1.66 758 102.23 656 5 300 4.58 1.73 696 90.00 606 10 600 3.20 1.21 866 180.00 686 15 900 2.47 0.93 948 270.00 678 20 1200 1.98 0.75 985 360.00 625 25 1500 1.67 0.63 1020 450.00 570 , 30 1800 1.46 0.55 1057 540.00 517 35 2100 1.30 0.49 1089 630.00 459 40 2400 1.18 0.45 1122 720.00 402 45 2700 1.07 0.40 1139 810.00 329 ~ 50 3400 1.00 0.38 1178 900.00 278 55 3300 0.92 0.35 1188 990.00 198 60 3600 0.87 0.33 1222 1080.00 142 65 3900 0.82 0.31 1245 1170.00 75 70 4200 0.80 0.30 1305 1260.00 45 75 4500 0.77 0.29 1343 1350.00 -7 80 4800 0.75 0.28 1394 1440.00 -46 ' 85 5100 0.72 0.27 1420 1530.00 -114 90 5400 0.70 0.26 1459 1620.00 -161 95 5700 0.69 0.26 1517 1710.00 -193 100 6000 0.67 0.25 1549 1800.00 -251 DRAINAGE POND CALCULATIONS Required grassy swale pond storage volume = Impervious Area x.5 in./ 12 in.fft. = 252 cu. ft. provided: 310 cu. ft. OK! DRYWELL REQUIREMENTS - 50 YEAR DESIGN STORM Maximum storage required by Bowstring = 686 cu. ft. provided: 696 cu. ft. OK! ~-11 ' ' FLOW CALCULATION BASIN - E&OFFSITE B Tc (overiand) Tc (gutter) Areas "CN A*C Ct = 0.15 L2 = 200 0.20 0.90 0.18 Z1 = 50 0.61 0.15 0.0915 L1(A) = 50 Z2 = 50 0.71 0.15 0.1065 N(A) = 0.4 B= 0 0.00 0.00 0 S(A) = 0.01 n= 0.016 0.00 0.00 0 s= . 0.01 0.00 0.00 0 Tc (A) = 3.60 d= 0.144 0.00 0.00 0 Total A Comp "C" . L1(6) = 0 Tc (gu) = 2.08 1.52 0.25 N(B) = 0 S(B) = 0 Tc(A+B) = 3.60 Q=C*I"A= 1.66 Tc (B) = OA , Tc(tot.) = 5.68 Q(est.) = 1.66 Intensity = 4.39 A = 1.0368 WP = 14.4029 R = 0.0720 V = 1.61 Tc (total) = Tc (overland) + Tc (gutter) Tc(gu) = 2.08 Tc (overiand) = Ct*(L1*N1S"0.5)"0.6) Q(est) = 1.66 Ct = 0.15 L1 = Length of Ovedand Flow Holding = 7.13 N= friction factor of overiand flow (.4 for average grass cover) S= average slope of overiand flow - Tc (gutter) = Length (ft.)Nelocity (ft./sQC.)/,60 B= Bottom width of gutter or ditch ' Z1 = inverse of cross slope one of ditch Z2 = inverse of cross slope two of ditch d= depth of flow in gutter (estimate, check estimate with Flow) • Area = d"B+d^2/2"(Z1+Z2) Wetted perimeter = B*d+(1/sin(atn(1/Z1))+1/sin(atn(1/Z2))) Hydraulic Radius = R= Area/Wetted Perimeter , Velocity = 1.486/n*R".667*s".5 Flow = Velocity#Area n = 0.016 for asphalt s= longitudinal slope of gutter Floor outflow =(.36"depth/hr per sq.ft. floor) *(1 ft depth/12") *(1 hr/3600 sec) = 0.00000833 cfs per sq.ft. of floor area Gravel Bed outflow =(soil perc rate, in./hr.)*(1 ft. depth/12")'`(1 hN3600 sec)*(gravel bed floor area, sq. ft.) Storm Volume: U/G = gravel bed volume *.30 Surface = Volume above grate elevation ~3 -1Z ~ GRATEAND INLET CALCULATIONS r- q t c.~. ~ w4-7 ' 5V-YEAR _ r FLOW CALCULATION BASIN - A&OFFSITE B Tc (overland) Tc (gutter) Areas "C" A*C Ct = 0.15 L2 = 200 0.50 0.90 0.45 Z1 = 50 3.07 0.15 0.4605 L1(A) = 450 Z2 = 3 0.00 0.15 0 N(A) = 0.4 B= 0 0.00 0.00 0 ~ S(A) = 0.2 n= 0.016 - 0.00 0.00 0 s= 0.02 0.00 0.00 0 Tc (A) = 5.48 d= 0.218 0.00 0.00 0 Total A Comp "C" L1(B) = 0 Tc (gu) = 1.12 3.57 ;k 0.26 N(B) _ 0 ~o `~oes N~" S(B) = 0 Tc(A+B) = 5.48 1 e 5~6 -b a s;•~ A Q=C*I'A= 3.77 Tc (B) = 0.0 Tc(tot.) = 6.60 Q(est.) = 3.76 ~ Intensity = 4.14 _ A = 1.259386 - WP = 11.5916 R = 0.1086 V = 2.99 Tc (total) = Tc (overiand) + Tc (gutter) Tc(gu) = 1.12 Tc (overtand) = Ct'`(L1 *N/S"0.5)^0.6) Q(est) = 3.76 Ct = 0.15 L1 = Length of Overland Fiow Holding = 7.13 N= friction fac#or of overland flow (.4 for average grass cover) S= average slope of overland flow Tc (gutter) = Length (ft.)Nelocity (ft./sec.)/60 B= Bottom width of gutter or ditch Z1 = inverse of cross slope one of ditch Z2 = inverse of cross slope two of ditch d= depth of flow in gutter (estimate, check estimate with Flow) • ~ Area = d*B+d"2/2*(Z1 +Z2) Wetted perimeter = B*d+(1/sin(atn(1/Z1))+1/sin(atn(1/Z2))) Hydraulic Radius = R= Area/1Netted Perimeter Velocity = 1.486/n''R^.667*s".5 Flow = Velocity*Area - n = 0.016 for asphalt s= longitudinal slope of gutter ~ Floor outflow =(.36"depth/hr per sq.ft. floor) *(1 ft depth/12') *(1 hr/3600 sec ) = 0.00000833 cfs per sq.ft. of floor area Gravel Bed outflow =(soil perc rate, in./hr.)*(1 ft. depth/12")*(1 hr/3600 sec)*(gravel bed floor area, sq. ft.) Storm Volume: U/G = gravel bed volume *.30 Surface = Volume above grate elevation Page 1 C- / ~ C. c.~ vb '1~ ~ ~ 3t 37. S0jRT ~ OEPTH OF FLOW J y- FE T 3 .01 .02 .03 .os .os .oe .oe .10 .3 .4 .S .6 .7 .a .9 1.0 ~ 4 1.0 , I ~ ~ ! .s ~ ~ ; ~ I 1 I ' I ` I ~ I ~ I I I ~ .s .-4- .s t4-1 44 ~ .4 ~ .3 ~-t-1- I I~ I~T ► ~ 1 1 I I 1 ~ ~ I~ j~ ~ ~ ~ ~ ~ ~ ~ Q a =.20.9 L L - o. i9s'o-r- 1*7.11 0"13 .10 3 y i ; ; i.......~~ 5 0. , ~ ~ ; ~ I ~ o ~ ~ ~ ~ . 9 L .os ~ i os ~ .oa o ~ '04,~ 1 .o ~ ~ , a) DISCHARGE PER FOOT OF ,s LENGTH OF CURB OPENING INLETS WHEN INTERCEPTING ~ + t 1 100 % OF GUTTER FLOW - ---41- - - - - L ~ 0•3`f (b) PART{AL INTERCEPTION ~ RATIO FOR INLETS OF L SE GTH LESS THAN La T -.2 l_ xo. y - 0. 2 4 i ~ _L._ ~ - 3-77 - l. t g ~ 2" y' ~ j ~ I j I j3YP"ss - I , I ~ ti~~ r ~ 1o L~~; s~j.l? 0.29 .os .os .oe .10 .i .~3.4s .s .e 1.0 ~ / . ~ 0.x 0, W= ~I cfS i~►~~ - L/La J',yq - ~/°~by q7:, p•bZ CAPACITY OF CURB OPENING INLETS ~.xo.~3= 0•'~? ON CONTINUOUS GRADE 4 L~`-`'~ 5.4 "0' y34, C~~ o.57= 0084 ` i~ O,~7 -Plowby 6-39 P FI uRE 16 ;s a~•~J~'' o,ey - fto~ r 1 i/ a,wo..-~ ~ D K-, 6r p,.O i-► P7MS I C-L ~ Triangular Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: Comment: Initial depth of flow (inlet 1) ~ Solve For Depth Given Input Data: Left Side Slope.. 50.00:1 (H:v) Right Side Slope. 3.00:1 (H:V) Manning's n...... 0.016 Channel Slope.... 0.0129 ft/ft Discharge........ 3.77 cfs Computed Results: Depth............ 0.24 ft Velocity......... 2.54 fps Flow Area........ 1.49 sf ~ Flow Top Width... 12.55 ft Wetted Perimeter. 12.59 ft Critical Depth... 0.26 ft Critical Slope... 0.0074 ft/ft Froude Number.... 1.30 (flow is Supercritical) ~ . ' ~ Open Channel Flow Module, Version 3.11 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 ' C_~ ~ ~ Triangular Channel Analysis & Design Open Channel Unif onn f low , Worksheet Name: Comment: Gutter flow depth before 2nd opening ~ Solve For Depth Given Input Data: Left Side Slope.. 50.00:1 (H:V) Right Side Slope. 3.00:1 (H:V) Manning's n...... 0.016 Channel Slope.... 0.0129 ft/ft Discharge........ 2.49 cfs Computed Results: ' Depth............ 0.20 ft Velocity......... 2.29 fps Flow Area........ 1.09 sf Flow Top Width... 10.74 ft Wetted Perimeter. 10.78 ft Critical Depth... 0.22 ft Critical Slope... 0.0078 ft/ft Froude Number.... 1.27 (flow is Supercritical) ~ Open Channel Flow Module, Version 3.11 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 ~-y ~ Triangular Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: Comment: Gutter flow depth before 3rd opening ~ Solve For Depth Given Input Data: Left Side Slope.. 50.00:1 (H:V) Right Side Slope. 3.00:1 (H:V) Manning's n...... 0.016 Channel Slope.... 0.0129 ft/ft Discharge........ 1.49 cfs Computed Results: Depth............ 0.17 ft Velocity...... 2.01 fps Flow Area........ 0.74 sf Flow Top Width... 8.86 ft Wetted Perimeter. 8.89 ft Critical Depth... 0.18 ft Critical Slope... 0.0083 ft/ft Froude Number.... 1.23 (flow is Supercritical) , Open Channel Flow Module, Version 3.11 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 . C~ ~ ~ ~ Triangular Channel Analysis & Design Open Channel Uniform flow Worksheet Name: Comment: Gutter flow depth before 4th opening ~ Solve For Depth Given Input Data: Left Side Slope.. 50.00:1 (H:V) Right Side Slope. 3.00:1 (H:V) Manning's n...... 0.016 Channel Slope.... 0.0129 ft/ft Discharge........ 0.64 cfs Computed Results: Depth............ 0.12 ft Velocity......... 1.63 fps Flow Area........ 0.39 sf Flow Top Width... 6.45 ft Wetted Perimeter. 6.47 ft Critical Depth... 0.13 ft Critical Slope... 0.0093 ft/ft - Froude Number.... 1.16 (flow is Supercritical) ~ ~ ~ Open Channel Flow Module, Version 3.11 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 C ~ U Q ~ ~"boio .#-,iter L t. S+~ • 3f37 so) L DEPTH OF FLOW - y- FE T C►, Z .01 .02 .03 .04 .05 .06 .08 .10 .2 .3 .4 .5 .6 .7 .6 .9 1.0 1.0 .8 ~ I, I~ III I ~ -s ~ - - -i- -I- ' -1- 7-t- -7 jL~~' ~ .s i J 1.. ~ ~ . • . jT .2 L A% Lz p 1.~=13•e~ .10 ~ C2 0950 LaL= .08 .06 .obS 3 1 .os ti5 E S ~ I j .os t .0 3 C.~~ ~ L r►c ~S ~ ~ se ~ ~i I I I~ II ~ ' ,,;eS ~ ~ ~ S w, de. I I I I I I ~ I ~ i i i I I ~ I I o ~ i ~ ~ 1 ~ I ~ III . , i 1 -~i ~ ~ i~~ill Ooooor I t IL1 1 I I 1~ .oi ~ I I ~ 1.0 .e (o) DISCHARGE PER FOOT OF 10, LENGTH OF CUR6 OPENING INLETS WHEN INTERCEPTING , , 100 % OF GUTTER FLOW ' - - - ~ - - - t -i . ~ L 1 .s I I ( ~ Q (b) PARTIAL INTERCEPTION ~ a4b ~ I I ~.3 Qa RATIO FOR INLETS OF -L--~--- - p~ ---r~---t•-~--~-~-y- LENGTH LESS THAN La . / ~ ; I ~ 2 OOIF 001- 0.11 - ;ti- i L - ti~ - 9.9 •Q ~ D~Yl3S~ 0•7q ~~e-cep~~- ~ ~ j ~ I I ~--.~.10 ~3yPA31 • C~ .os oe .oe .io .2 .3 .s .s .s .a 1.0 D : S.SH = L/L° - 0 ~ s a 8 ~ $ = o. 57 CAPACrTY OF CURB OPENING INLETS ax o.~ ;^~«P~-~L g_ o sl ` a Ze OP5 ON CONTINUOUS GRAOE f3rp~ss = b• 6-39 FIGURE 16 ~ .0- 2 ~ cPS i•► 4 e.ceP4ecc. . C_ 7 Triangular Channel Analysis & Design Open Channel - Uniform flow Worksheet Name: r iOr ~ ~ Comment : Initial gutter depth at curb inlet 2 ~ I 5 O~-e~ ►^9 ( Solve For Depth Given Input Data: Left Side Slope.. 50.00:1 (H:V) . Right Side Slope. 3.00:1 (H:V) Manning's n...... 0.016 Channel Slope.... 0.0129 ft/ft Discharge........ 1.64 cfs Computed Results: Depth............ 0.17 ft Velocity......... 2.06 fps Flow Area........ 0.80 sf Flow Top Width... 9.18 ft Wetted Perimeter. 9.21 ft Critical Depth... 0.19 ft - Critical Slope... 0.0082 ft/ft Froude Number.... 1.23 (flow is Supercritical) Open Channel Flow Module, Version 3.11 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 C-8 Triangular Channel Analysis & Design Open Charnel - Uniform f low Worksheet Name: ► V)r- Ioy Comment : Initial gutter depth at curb inlet 2 . P Solve For Depth Given Input Data: Left Side Slope.. 50.00:1 (H:V) Right Side Slope. 3.00:1 (H:V) Manning's n...... 0.016 Channel Slope.... 0.0129 ft/ft Discharge........ 0.84 cfs Computed Results: Depth............ 0.13 ft Velocity......... 1.74 fps Flow Area........ 0.48 sf Flow Top Width... 7.15 ft wetted Perimeter. 7.17 ft Critical Depth... 0.14 ft Critical Slope... 0.0090 ft/ft Froude Number.... 1.18 (flow is Supercritical) Open Channel Flow Module, Version 3.11 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 , C _ ~ Triangular Channel Analysis & Design Open Channel - Uniform flow Worksheet Name : pl,4-o Comment : Initial gutter depth at curb inlet 2 p 3 f C Solve For Depth ~ Given Input Data: Left Side Slope.. 50.00:1 (H:V) Right Side Slope. 3.00:1 (H:V) Manning's n...... 0.016 Channel Slope.... 0.0129 ft/ft Discharge........ 0.26 cfs Computed Results: Depth............ 0.09 ft Velocity......... 1.30 fps Flow Area........ 0.20 sf Flow Top Width... 4.60 ft Wetted Perimeter. 4.62 ft Critical Depth... 0.09 ft Critical Slope... 0.0105 ft/ft Froude Number.... 1.10 (flow is Supercritical) ' Open Channel Flow Module, Version 3.11 (c) 1990 Haestad Methods, Inc. * 37 Brookside Rd * Waterbury, Ct 06708 C. - !(J 0^ !3+ snc.) _ s. iO ~fs ub.H 9 ~ ~ o,3 to 1.0 ' Z 1 O e 11 ' 2 .9 ~ 6 . ~ N 10 s Lo, 4 L) d Q Z .o U. ti tig~ ~ t T.s a ~ r. .s W !i a .t 6 Z .6 0 .S ~ ~ .6 . • O4 2 L.5 / W A ul •.s ~ j~~ a 2 0 U. ! 0 Z eeU. r ° a C I ~ .1 _ 3.s z .os Q .a tr ~ O 06 ~ .25 Q . ~ Zs 8 •04 U. U. ~ .2 ~ ~ W a = 2.S CL " O .02 O ,2 ~ a p .t~ 4 a v ~ _,4- ` HZR~ ~ . . N' ~ ~ • SstaM ~.s ►.ocaL oEPaE uR8 F C + ~OR CQPACVY 4 ~ ppiNTS ; N4MpGRAPN,NLETS A-T LOVI 0p tNING. Q , GuRE i7 ~ ' a~AV of PueOw~sK'u~ aN0. C. sUTwo, °'"'g'0" 6_41 l,kJS p oT ~ $as;, (GRATING iN PLANE OF PAVEMENT) WATER SURFACE ~ ' J Wg x S " M dav " d z 5 d j ✓ATI NG W = WIDTH OF FLOW t~ WQ ~ ~ 0 10 20 30 40 5 60 70 80 90 100 100 . . , . . ~ . . W9 ; W WIOTM OF FLOW 70' , 40 901 eo 70- . , - so N oTE : The curve is based on povement with ° 54- uniform rcte of rise from curb to crown, 0-R 40- . , . r .30' C,.oss - s~~Pe ~ Z ~ ~ d•OZ. ~ ~ = D • 0~ zo- a~ ~l o Z, 2 10 ' IA) _ I 1 t ~ • ~ ~j ~ T ~ , ~ ~ 0 • c~ ~ ~ = a v ° ~ d,9e C~s ' EXAMPLE : p ~ S Given : Q= 10 cfs d= 0.5 5x = 5% W= 0.5' = 0.05 = 10 t'~~"'~by With Wg = W=?= 20 Groting 2' wide tokes 44. 5% Q= 4,45 cfs ~ 1 And Groting 46 wide takes 75 % Q= 7.50 cf C~,+L'~;iA Ui1 ~ be ~~51~'~~^ Ca(c~.lr~~-e•~ p Y' CaP aC ~ /,tCAt~tC ~orc.e v✓i~~ ~a~ pJr.(a., 1 GRATE ON A CONTINUOUS GRAOE e:.~~y ~''11t- P a n d. FIGURE 15 6-31 ~ ' Triangular Channel Analysis & Design Open Channei - Uniform flow ' Worksheet Name: Comment: Depth of flow on private drive at CB4 Solve For Depth Given Input Data: _ Left Side Slope.. 50 . 00 :1 (H : V) Right Side Slope. 50.00:1 (H:V) Manning 's n . . . . . . 0 . 016 CN ~v c. Channel Slope.... 0.0700 ft/ft ~ Discharge........ 1.00 cfs Computed Results : ~ -e Depth............ 0.08 ftj-Velocity......... 2.93 fps Flow Area........ 0,34 sf Flow Top Width 8.. 26 f t Wetted Perimete.r 8-2 6 f t Critical Depth... 0.12 -ft Critical Slope... 0.0095 ft/ft Froude Number . . . . '2.-55 (flow is Supercritical ) , ' Open Channel Flow Module, Version 3.11 (c) 1990 Haestad Methods, Inc. 4 37 Brookside Rd * Waterbury, 1 ~ - ~3 Circular Channel Analysis & Design Solved with Manning's Equation Qpen Channel - Uniform flow Worksheet Name: Comment : Pipe f rQm CB4. .to PQkid D~ Solve For Full Flow Capacity . Given Input.Data: Diameter.......... 0.67 ft Slope 0.0066 ft/ft . Manning' s .n . . . . . 0...011 Discharge......... 1.18 cfs Computed Results: OK Full, Flow GapacitX.. 1.1fl_ cfs > 1.0(0 GfS Full Flow Depth........ 0.67 ft Velocity. . . . 3,33 fps Flow Area......... 0.35 sf Cri~~~al- Depth,... . 0.51 f t Critical Slope 0.0076 ft/ft Per-c.en.t_ Eu11_~ 1Q.a ..QIl_ s Full Capacity..... 1.18 cfs QMAX.@-~94-D..~.~..... 1,26_,cfs Froude Number..... FULL ~ Qpe-r1. .CharLrxe), .F1Qw. MLp~ule R. Vexsion. 3.11 (cl. 1990 Haest.ad_Methods,. Inc. * 37 Brookside Rd * Waterbury,,Ct 06708 C-IY ~o~o C(3QS~h ~S ~'IOw~ L u✓b c~✓~P Oh 14A C sp ~v„plo w1 ; V a~'e iV ~ 0 1.0,z Q / 7f'3 10 11 _ 1.6(P ` - 10 0' 7 3 e ~2~ e L~ 39 2 4 .7 ~ ►/V Se- 1.~ O(~e^ ' ^j ~ e - -Flavt,d S'i c~ eS . LA. i.s ~.s F.. . .s o 2 z ~ o .00 .4p ~ F~ i ~ 6.5 ' a cI 1.0 ~ .s 6 v) 1.0 .e U .8 I~//% ~ s. s Z ~ ~'e 2 .8 .s ~ z ^ W S .7 ~ ' ' O A ~L - D- sc- LL. W 0 W '6 2 • Z ~ = 4 ~Q'~~~ a 2 _ _ . _ .s ~ +Q" i 41 O j 2 .s U. . 2 s.s ° c~ ,-.s , W i 2 2 ' O i t9 W le lop p 2S J OA p E- ~ . O .06 Q .3 2 ~ W W = O .04 Q 2.5 1.6 3 .25 2 W 0 a ' .02 a .2 ' W 2 Q a U. Q o U .IS .OI 0 .IS ~ a ~ L _ ~.:_;s_:., NT. ~ Z cuas ~ (~LOCAL DEPRESSION (a) t a . < ~ ~ . ~ ' 1•2 NOMOGRAPH FOR CAPACITY OF CURB 9UREAU oF PueLIc aoAOS OPENING INLETS AT LOW POINTS OIVISION TWO, wASMINGTON, O.C. FIGURE 17 6-41 c--15